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Abstract

Since their discovery in the late 1800s, liquid crystals have become an im-
portant part of the technology of the modern world. As a consequence the
study of anisotropic liquids in general, and liquid crystals in particular, has
grown into a large interdisciplinary field involving physics, mathematics,
chemistry and biology to name a few.

In a series of papers we consider numerical solution of the evolution of
the director, a vector valued field giving the local average orientation of the
long axis of molecules in nematic liquid crystals. The flow field is assumed
to be stationary throughout this work. We consider both the free elastic
dynamics of the director as well as the case with applied electric fields on a
finite domain.

We study the dynamics of the 1D Fréedericksz transition, where an
applied electric field forces reorientation in the director field. The director
is assumed strongly anchored and the boundaries. Herein, we study the
role of inertia and dissipation on the time evolution of the director field
during the reorientation. In particular, we show through simulations that
inertia will introduce standing waves that might effect transition time of
the reorientation, but only for very small time scales or extremely high
molecular inertia.

The Fréedericksz transition is also numerically studied with weak bound-
ary anchoring. For this problem it has been shown analytically that there
exists a hierarchy of meta-stable equilibrium configurations. This is in sharp
contrast to the strongly anchored case, where the equilibrium is globally well
defined. We derive an implicit numerical scheme for this problem and show
the well-posedness of the discrete equation system. The method can be
used for the fully nonlinear model with coupled electric field. Through sim-
ulations we show that the director can transition into different meta-stable
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states given different small perturbations to the initial data.

The numerical solution of variational wave equations describing the elas-
tic dynamics of nematic liquid crystals is considered in both 1D and 2D.
Using energy respecting Runge-Kutta Discontinuous Galerkin methods we
show that numerical solutions that either conserve or dissipate a discrete
version of the energy can be obtained by efficient time marching. The dissi-
pative scheme uses a dissipative up-winding at the cell interfaces combined
with a shock-capturing method.

Finally, we consider the application of nonintrusive sampling methods
for uncertainty quantification for the elastic problem with uncertain Frank
constants. The multi-level Monte Carlo (MLMC) method has been success-
fully applied to systems of hyperbolic conservation laws, but its applicability
to other nonlinear problems is unclear. We show that MLMC is 5-10 times
more efficient in approximating the mean compared to regular Monte Carlo
sampling, when applied to variational wave equations in both 1D and 2D.
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Chapter

Introduction to liquid crystals

The classical view in the physical sciences describes three basic states of
matter: gas, liquid and solid. By varying pressure and temperature, a
phase transition can be induced between any of these. However, it turns out
that this picture is not entirely accurate for all substances. Certain organic
compounds have intermediate phases, often referred to as mesophases, with
properties in between those of a liquid and those of a solid. Consequently,
a substance in any of these phases is called a liquid crystal.

The essential features of liquid crystals can be understood by considering
which aspects of liquids and solids they inherit. In general, the solid state
is characterized by strongly bound atoms in a rigid configuration. The
geometry can be completely irregular, like in the case of glass, or in the
form of an ordered lattice as is the case for diamonds and metals. The
latter case is often referred to as a crystalline configuration and involves
ordering in both the position and orientation of the constituent molecules.
On the other hand, the identifying property of a liquid is that its molecules
are free to flow. Here no correlation exists between the position of the center
of gravity of different molecules, apart from the average particle density.

As its name suggests, a liquid crystal flows like a liquid while inheriting
some crystalline properties of the solid phase. In practice, the type of or-
dering in liquid crystals can vary greatly, depending on the geometric and
physical properties of their molecules. For something to be defined as a
liquid crystal, it has to exhibit fluid-like properties in at least one spatial
dimension while having some crystalline anisotropy on the molecular level
[13].

The liquid crystal literature is extensive, owing to many decades of ex-
perimental and theoretical interdisciplinary research. An exhaustive liter-
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4 Introduction to liquid crystals

ature survey will not be given here, but a few essential sources should be
mentioned. The books of Collings [11, 10] serve as excellent introductions to
this vast topic both from a historical and a technical perspective. Kelker’s
survey [34] gives a comprehensive and detailed account of the history of
liquid crystals. De Gennes and Prost [13] have written what has become a
classical reference on the physics and modeling of liquid crystals. Other ex-
cellent sources include the books of Chandrasekhar [9] and Blinov [3]. The
book of Virga [58] is a rigorous account of the mathematical framework of
modern liquid crystal theory. Stewart’s recent book [56] is an accessible and
comprehensive introduction to the mathematical modeling of liquid crystals.

1.1 A brief history of liquid crystals

Liquid crystals were observed by several scientists in the mid to late nine-
teenth century. However, the discovery of liquid crystals is usually at-
tributed to the Austrian botanist Friedrich Reinitzer in 1881 [10]. While
studying the role of cholesterol derivatives in plants, Reinitzer described a
substance he was studying as having two melting points. While heating a
sample of solid cholesteryl benzoate he noticed that at 145.5 °C it melts into
a cloudy liquid. When raising the temperature further he noticed a second
phase transition occurring at 178.5 °C, leaving the sample as a clear liquid.

Two decades after his initial discovery, Reinitzer mentioned his obser-
vations in a letter to the German physicist Otto Lehmann. This initial
correspondence proved very fruitful, and it prompted the systematic study
of liquid crystals by Lehmann using precise instruments for studying mate-
rials using polarized light. It is Lehmann that eventually coined the term
“liquid crystal” (“Fliissige Krystalle” in German).

Today we know that the substance studied by Reinitzer, cholesteryl ben-
zoate, belongs to an important sub-group of liquid crystals called cholesteric
(or chiral) liquid crystals. Lehmann continued his work on liquid crystals
and eventually experimented on what is now known as nematic liquid crys-
tals, a class of particular importance in modern applications. It would take
decades for Lehmann’s ideas about liquid crystals to become part of the
mainstream theory. Meanwhile, several established scientists would oppose
the concept of a fourth state of matter and offer alternative explanations
for Reinitzer and Lehmann’s observations.

From the beginning of the 20th century, Daniel Vorlander’s group at
the University of Halle continued the experimentation on liquid crystals.
Together with his coworkers Vorlander was able to put out an enormous
volume of results. They were able to identify essential features of materials
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that have a liquid crystal phase and synthesized a large number of the liquid
crystals known today.

The 1930s saw the first major developments in the theoretical work on
liquid crystals. In particular, the Swedish physicist Carl Wilhelm Oseen
[51] developed a continuum theory for the elastic properties of nematic lig-
uid crystals. This enabled the mathematical modeling of the ordering in
liquid crystals for the first time, which in turn made theoretical explana-
tions for experimental observations possible. In the same period, Zocher
[65] pioneered the theoretical research into the interaction between nematic
liquid crystals and electromagnetic fields. This would later pave the way
for applications in liquid crystal displays.

In the time following the Second World War, the group of the British
chemist George William Gray worked on synthesizing a large number of
liquid crystals. Gray went on to publish one of the classic texts in the
understanding of which substances will exhibit a liquid crystal state [25].

Oseen’s pioneering work on elasticity in nematics was continued in the
1950s by the British physicist Frederick Charles Frank [19]. Today the
Oseen—Frank elastic continuum theory is a cornerstone in the theoretical
description of nematic liquid crystal.

In 1962 scientists of the Radio Corporation of America labs demon-
strated for the first time that the optical properties of a liquid crystal layer
can be manipulated by applying an electric field. This discovery laid the
groundwork for the first liquid crystal display (LCD), arguably the most
important application of liquid crystals in the modern world. Applications
in consumer devices such as LCDs prompted research into substances that
remain in the liquid crystal mesophase at room temperatures. MBBA and
5CB are examples of liquid crystals that are stable at room temperatures;
they were both synthesized during this era because of their specific temper-
ature profile.

In 1991, the crucial role of liquid crystal theory and the theory of com-
plex fluids was recognized by the Nobel prize in physics being awarded to
Pierre-Gilles de Gennes. The prize was awarded in part for de Gennes’ ma-
jor contribution to the general continuum theory for nematic liquid crystals,
the Landau-de Gennes theory [45, 13].

1.2 The nematic mesophase

One of the most studied liquid crystal mesophases is the nematic phase.
Usually, nematic liquid crystals consist of elongated organic molecules. Be-
cause of the geometry, the long axis of neighboring molecules will tend to
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align. This causes macroscopic order in the molecular orientation, as illus-
trated in Figure 1.1, while the centers of mass as free to flow like a liquid.

Figure 1.1: Illustration of the orientational ordering in nematic liquid crys-
tals. The elongated molecules tend to align their long axes while flowing
like a liquid.

The origin of the word nematic is the Greek word for thread. This comes
from the thread-like patterns (discliniations) often observed in nematic lig-
uid crystals. Disclinations can be seen as singularities in the director field,
the average local orientation of the long axes.

The first nematic liquid crystal, p-azoxyanisole (PAA), was synthesized
in the late 1800s by Gattermann and Ritschke [22]. PAA is in the nematic
phase between 118°C and 136 °C and was one of the liquid crystals exten-
sively studied by Lehmann in his early work.

One of the most important applications of nematics is in display de-
vices. This has prompted a great interest in liquid crystals that have a
stable nematic phase at room temperature. First synthezised by Kelker
and Scheurle [35], the liquid crystal 4-methoxybenzylidene-4-butylabiline
(MBAA) was the first discovered liquid crystal with a nematic phase a
room temperature. The liquid crystal 4-pentyl-4-cyanobiphenyl (5CB) was
designed specifically for use in liquid crystal display devices and is in the
nematic state for temperatures from 18°C to 35°C. Shown in Figure 1.2,
the long axis of 5CB is about 20 A and the short axis about 5A.

1.3 The cholesteric mesophase

In the cholesteric phase, the geometry of the molecules causes a helical
configuration of the long axes. In the ground state, the director (average
orientation of the long axis) will twist around a common axis. The charac-
teristic length scale of the twist (the pitch) is usually orders of magnitude
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4-Pentyl-4-cyanobiphenyl (5CB)

" CSHHCN

20A

Figure 1.2: Schematic representation of the nematic liquid crystal 4-pentyl-
4-cyanobiphenyl (designated 5CB).

larger than the size of the molecules.

Cholesteric liquid crystals were the first liquid crystals to be discovered
by Reinitzer in the late 1800s. The name has a historic origin; even though
cholesterol itself is not a cholesteric liquid crystal, many cholesterol deriva-
tives are. The inaccuracy of this naming convention has caused many to
refer to this as the chiral phase.

1.4 The smectic mesophase

In the smectic liquid crystal phase, the molecules form layers. Within the
layers, the molecules behave much like in nematic liquid crystals, having a
preferred orientation among a common local director. Smectic liquid crys-
tals is an example of a liquid with both positional and orientational molecu-
lar ordering. There is positional ordering along the direction perpendicular
to the layer planes, while inside the layers the molecules are free to flow like
a liquid.

As illustrated in Figure 1.3, it is common to denote different types of
smectic liquid crystals depending on how the molecules are oriented within
the layers. In particular, if the average molecular orientation is orthogonal
to the layer plane it is defined as a smectic A type material. If the orientation
is at an angle compared to the normal, we refer to it as a smectic C liquid
crystal.

It should be noted that different types of mesophases can in some cases
be observed in the same material. An often-seen picture is the following: at
low temperatures a material will be solid. When the sample is heated up it
will undergo a phase transition into the smectic liquid crystal phase. When
it is heated further, it then transitions into the nematic phase. Lastly, at
high temperatures, the liquid crystal will be in an isotropic liquid state with
no positional or orientation ordering.
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-

- sy

(a) Smectic A (b) Smectic C

Figure 1.3: Illustration of the smectic mesophase. For the smectic A phase
(left) the molecules align in layers with the orientation normal to the layer
interface. In the smectic C phase (right) the average orientation is tilted.

1.5 Application: Display devices

One of the best known applications of liquid crystals is in display devices.
Since the discovery of the basic technology in the 1960s and the commer-
cialization in the 1990s, liquid crystal displays (LCDs) have since surpassed
the traditional cathode ray tube (CRT) technology for the use in televisions.
Benefits of LCDs include low power consumption, compact design and safe
disposal. This has helped make LCDs omnipresent in the modern world
and they can be found in everything from computer monitors to cell phones
and calculators.

An LCD screen is composed of a matrix of pixels. Many different varia-
tions on this technology exist, but the basic principle behind a single pixel
in an LCD is illustrated in Figure 1.4. A liquid crystal cell is placed be-
tween two glass plates fitted with electrodes. The liquid crystal used has a
natural twist in the molecular ordering. Furthermore, the glass substrate is
designed so that the molecular orientation near the back plate is vertical,
and the length of the cell is designed specifically to allow the molecules to
twist 90°C before hitting the front plate. A vertical polarizer is placed in
the back of the cell and a horizontal polarizer is placed in the front.

In its ON state there is no voltage applied to the electrodes and the
configuration is a shown in the top part of Figure 1.4. Unpolarized light
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ON state V=0
Incoming light
:> T :>

OFF state

V>0
Incoming light \ ‘ %

Figure 1.4: Schematic illustration of a TFT LCD display. A liquid crystal
cell with twisted molecular orientation is placed between crossed polarizers.
The polarization of the light is twisted by the liquid crystal, allowing it to
pass through the second polarizer. A voltage difference can be applied to
the cell in order to straighten out the orientation of the molecules, thus
stopping light from passing through.
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enters from the back and gets vertically polarized before entering the liquid
crystal. The twist of the molecular orientation acts to twist the polarization
of the light by 90°C over the length of the cell. The light then passes
through the horizontal polarizer in the front and goes on to hit the front of
the display.

In the OFF state a voltage difference is applied over the electrodes. This
induces an electric field in the cell which, because of the dielectric anisotropy
of the molecules, will induce a torque favoring the alignment along a common
axis. For sufficiently high voltages these torques will overcome the natural
twist in the liquid crystal, as shown in the bottom part of Figure 1.4. In
this case the light will remain vertically polarized when passing through the
liquid crystal and will be stopped by the horizontal polarizer.



Chapter

Static continuum theory for
director fields in nematics

In an ideal nematic liquid crystal, all molecules will be aligned along a com-
mon direction enforced by bounding surfaces or external fields. However,
in many practical situations there will be a competition between different
external influences on the liquid crystal cell, potentially leading to nontriv-
ial configurations. In addition, thermal excitations means that individual
molecules will not be perfectly aligned, which introduces the concept of
different degrees of orientation.

Since the typical correlation length in nematic liquid crystals is of the
order of pm while the molecular size is measured in nm, a continuum de-
scription is often adopted. Herein, the orientational state of a nematic liquid
crystal can be represented by two objects, as illustrated in Figure 2.1: the
first one is the director field, a vector n(r) of unit length, giving the average
molecular orientation in some small ball B. The second is the order param-
eter S(r) giving the local degree of orientation, often given in terms of the
second Legendre polynomial as

COS2 —
S = (Py(cos(6))) = <3f)1> | (2.1)

Here the brackets indicate the weighted average

(9(0)) = /B 4(0)1(0) aV, (2.2)

where f(0) is the statistical distribution of the molecular angles #. Special
cases of the order parameters are:

11



12 Static continuum theory for director fields in nematics

e S = 1: Perfect alignment along the director
e S = 0: No orientation (isotropic)
e S = -1/2: Perfect alignment orthogonal to the director

The order parameter can be defined in terms of higher order Legendre poly-
nomials in cases where the higher accuracy is needed.

It should be noted that the picture above only applies to uniaxial nemat-
ics. Certain nematic liquid crystals are biazial, i.e. consisting of molecules
having a shape that must be described by two anisotropic axes. The most
general continuum theory for nematics thus requires two vector valued quan-
tities m; and mg, as well as two scalar order parameters S and Sy [45]. The
common general framework for describing nematic liquid crystals is the so-
called Landau—de Gennes theory. Herein, the continuum state is given by
the tensor

1
Q= Sl(nl & ’fbl) + SQ(’I’LQ & ’I’LQ) — 51(51 + 52)

The tensor @ is symmetric and has, due to the last term, trace zero.
Q-tensor theory has been widely successful in part for its ability to describe
defects and phase transitions in nematics. It should also be mentioned that
MacMillan [41] in his thesis developed a similar theory for biaxial nematics.
However, this topic is outside the scope of this text as we will focus on
models for uniaxial molecules.

The degree of which the Oseen—Frank picture can be seen as is a special
case of the more general Landau—de Gennes theory is a nontrivial issue that
has received some attention lately [42]. In some simplified geometries, the
equilibrium solutions of the two models coincide. However, counterexamples
can be constructed for which this is not the case [1]. This is due to the fact
that the director picture does not implicitly respect the physical symmetry
of the states n and —n being equivalent.

A common simplifying assumption in the modeling of nematic liquid
crystals is to assert a constant order parameter S. Indeed, this is the
paradigm that will be considered presently. It should be mentioned that
theory exists including effects of variable degree of molecular orientation.
The modeling of elastics given variable orientation was introduced by Er-
icksen [17] in 1991 as a proposed tool for describing defects in nematics
(often referred to as disclinations). For a detailed account of the theory of
nematics of variable orientation, Virga’s book [58] is an excellent starting
point.



2.1. The Oseen—Frank elastic energy 13

-——
- - 0,

Figure 2.1: The continuum description of a uniaxial nematic liquid crys-
tal involves a director field n and a local degree of orientation along this
direction, given by a scalar S = (Pa(cos(6))).

2.1 The Oseen—Frank elastic energy

In a nematic liquid crystal, inter-molecular forces will favor the alignment
of the director field along a common direction. The free energy Wor (per
volume) associated with distortions from a constant alignment is given by
the Oseen—Frank functional. It is based on the following constraints:

e Wor should vanish for undistorted director fields (Vn = 0)

e Since the states n and —n are physically indistinguishable, the energy
must be an even function of n

e Rotationally invariance prohibits terms linear in Vn

e Assuming moderate distortions, only terms of order (Vn)? are in-
cluded.

The derivation of the general form of the free energy Wor(n, Vn) satis-
fying the constraints above is a cumbersome exercise which is omitted from
this text. An interested reader is referred to the book of de Gennes [13,
Ch. 3] for a detailed discussion. The final form of the Oseen—Frank energy,
given by

1 1 1
Wor(n,Vn) = §a1|n x (Vxn)*+ Qag(v -n)? 4 iag(n -(V xn))?

+ (o + )V (Yn)n— (V-mm), (23)
is a result of decades of discussions dating back to the early work by Os-
een [51] and Zocher [65] and later modifications by Frank [19]. The material
constants ag, ag and ag correspond to the three basic types of elastic distor-
tions of the director field, bend, splay and twist, respectively, as illustrated
in Figure 2.2. Finding stable equilibrium configurations with respect to this
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energy has been a key topic in the static continuum theory of nematics. The
existence and partial regularity of minimizers to the Oseen—Frank energy
functional (2.3) was established by Hardt et al. [27] in their now classic

Y

WV o2

Figure 2.2: The three basic types of distortions that go into the Oseen—Frank
elastic energy (2.3).

The last term of (2.3) is a saddle-splay term and is in the form of a pure
divergence. Therefore, by using the divergence theorem, it can be written as
a surface integral. This term will not contribute to the static theory when
using fixed (anchored) director fields at the boundaries. Also, the term will
vanish identically in certain commonly studied cases. One example is the
bend-splay geometry in 1D,

n(z) = (cos(¢(x)), sin(y(x)), 0). (2.4)

As a result of this, the term is often ignored in the literature. Indeed, this
will also be the case for the remainder of this text.

A common additional assumption seen in the literature is the one-
constant approximation

a1 = (g = (3 = O4. (25)

The assertion of equality of the different elastic constants is made purely
out of mathematical convenience. For common nematic liquid crystals the
values of these material constants can differ significantly, as seen in Table
2.1. However, the simplified form of (2.3) resulting from the one-constant
approximation can significantly ease the analysis of nematics. Therefore,
(2.5) is almost ubiquitous in the theoretical analysis of nematics.
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Elastic constants (10712 N)
MBBA (25°C) 5CB (26°C) PAA (122°C)

[26] [14] [40]
a1 6.0 6.2 6.9
a9 3.8 3.9 3.8
o3 7.5 8.2 11.9

Table 2.1: Experimentally measured values for the elastic constants appear-
ing in the Oseen-Frank energy (2.3) representing bend (o), splay (a2) and
twist (as).

2.2 Electric fields

The interaction between electromagnetic fields and the director field has
historically been central both in the experimental study of nematic liquid
crystals as well as in applications. In general, applying an electric field to
a liquid crystal sample will produce temporary dipoles moments. The size
of these will, because of the anisotropic nature of the molecules, depend on
the orientation of the director field.

The polarization P (electric dipole moment per unit volume) is in a
dielectric proportional with the electric field E and given by

P =¢oxE,

where g9 &~ 8.854 x 1072 Fm™! is the permittivity of free space. Nematic
liquid crystals are anisotropic, so the constant of proportionality is a sus-
ceptibility tensor and the polarization will in general not be parallel to the
applied field. In a coordinate system defined by the director, i.e. by letting
n = (1,0,0), we can write (for uniaxial nematics)

Xg,| 0 0
xe=| 0 xg1 0 [,
0 0 xe.L
where xg | and xg,1 are the electric susceptibilities parallel and perpendic-
ular to the long axis of the molecules, respectively.
The electric displacement D is defined as

D =¢yE + P. (2.6)

In the case of linear polarization, it is common to combine the terms of the
displacement into
D =¢peE (2.7)
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using the dielectric tensor

] 0 0 1+ XE,| 0 0
e=10 . O = 0 1+ XE, L 0 R (2.8)
0 0 g1 0 0 I+xe,1

where ¢ and €, are the relative (dimensionless) electric susceptibilities
parallel and perpendicular to molecular long axis, respectively. In terms of
the relative susceptibilities, we can write (2.7) in the form

D =cpe  E +cpeq(n - E)n, (2.9)

where £, = €| —¢_ is the dielectric anisotropy. The displacement can always
be described locally in this way by choosing the appropriate coordinate
system, hence the form (2.9) is the general form most commonly used in
modeling.

The bulk energy density associated with the electric field is given by

Wg = —%D-E: —%50 (eL|EP? + eq(n- E)?). (2.10)
The negative sign in (2.10) can be a source of confusion for readers used
to the standard energy density of dielectrics used in electrostatics. The
reason for this is that (2.10) comes from considering the energy required to
maintain a constant voltage difference across the liquid crystal. For a more
detailed derivation an interested reader can turn to Collings and Hird’s
excellent book [11, Ch. 10].

The first (isotropic) term on the right hand side of (2.10) does not
depend on the director configuration if the electric field is assumed constant.
In this case the isotropic term will not affect the equilibrium equation for
the director field and is often ignored in the literature. In the current work,
both terms in the electric energy are kept both for completeness and due
to the fact that the electric field will be coupled to the director through
Maxwell’s equations.

Some basic quantitative features of the model are immediately apparent
from (2.10), see Figure 2.3. In particular, for £, > 0, the alignment of
the director field along the electric field (n- E = 1) is energetically favored.
Conversely, a negative electric anisotropy will cause alignment perpendicular
to the electric field. The dielectric constants for some common nematic
liquid crystals can be found in Table 2.2.

Electric fields are known to couple strongly with the director field in a
nematic liquid crystal. In general, the configuration of an electric field in
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Figure 2.3: Illustration of the orientation of liquid crystal molecules under
the influence of an electric field. The orientation of the long axis will be
perpendicular or parallel to the applied field, depending on the sign of the
dielectric anisotropy.

Dielectric constants (dimensionless)

MBBA (25°C) 5CB (26°C) PAA (122°C)

[55] [40] [55]
| 4.7 18.5 5.538
el 5.4 7 5.705
£a -0.7 11.5 -0.167

Table 2.2: Experimentally measured values for the dielectric constants ap-
pearing in the dielectric tensor (2.8) for some common liquid crystals.
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the presence of a dielectric is given Maxwell’s equations. In the absence of
free charge they are given by

V.-D=0 and VxXxE=0. (2.11)

The equations (2.11) must be solved together with the equilibrium equations
for the director field to give the correct configuration. However, in many
simplified settings the assumption is made that ¢, < 1 allowing for the
solution of Maxwell’s equation in a vacuum. In this case, the electric field
E is treated as a constant in the nematic energy (2.10).

2.3 Magnetic fields

The theory on applied magnetic fields in nematics is similar to that for
electric fields described in Section 2.2. An external magnetic field H will
induce a magnetic moment M (per unit volume) given as

M = xH. (2.12)

Like for electric fields, the magnetization will depend on the orientation of
the director field n. In the coordinate system of the director, the magnetic
susceptibility tensor xj; can be written as

x| 0 0
XM = 0 xm1 O ,
0 0 xmL

for uniaxial nematics. In the above, xyr,| and X, are the magnetic suscep-
tibilities parallel and perpendicular to the molecular long axis, respectively.
A straightforward calculation then allows for the magnetization M to be
divided into an isotropic and an anisotropic term, written as

M = xm1H + xXmo(n- H)n, (2.13)

where XMa = XM, — XM, 1]
The magnetic induction B in the presence of magnetization is defined
as
B = uy(H + M),

where g = 47 x 107" Hm™! is the vacuum permeability. By inserting for
the magnetization (2.13), and introducing the quantities

=14 XMy 1 =1+ xm,L (2.14)
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we obtain
B = pop1 H + popia(n - H)m, (2.15)

where pg = p — pL.
The bulk magnetic energy density is, analogously as in Section 2.2, given
by

1 1 1
Wy = —§B-H: —§,U0MJ_‘H‘2—§,U0/M(”'H)2- (2.16)

Comparing (2.16) to (2.10) reveals a striking resemblance in the theoretical
treatment of electric and magnetic fields. Also in this case it is common
to disregard the term in (2.16) that is independent of n, as it does not
influence the equilibrium configuration of the director. However, it might
be kept in cases where the total energy dependence on the applied electric
field is of interest. A simple inspection of (2.16) reveals that for u, > 0, the
alignment of the director along the magnetic field is energetically preferred.
Conversely, for negative magnetic anisotropy, the orthogonal configuration
is preferred.

The configuration of a magnetic field is in general given by Maxwell’s
equations, similarly to the situation for electric fields. However, unlike elec-
tric fields, magnetic fields are known to be virtually unaffected by the pres-
ence of a liquid crystal [56]. Therefore, it is usually seen as sufficient to
consider the vacuum equations

V-H=0 and Vx H=0.

The solution of these will in many simple geometries be a constant magnetic
field.

2.4 Weak and strong boundary anchoring

Surface effects are essential in the understanding of the basic physics of
nematics as well as in applications such as optical devices. The bounding
plates in a liquid crystal cell can be treated chemically or mechanically in
such a way that a specific molecular orientation is energetically preferred
near the boundary. In the modeling, the simplifying assumption is often
made that the director is fixed a priori to some set value at the boundary.
This is often referred to as strong anchoring.

In most optical liquid crystal devices the surface anchoring is sufficiently
strong so that the assumption of a fixed director at the boundary is appropri-
ate [8]. However, in cases with e.g. strong applied fields the electromagnetic
torques might be able to compete with, or even overcome, the boundary
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anchoring. Rapini and Papoular [53] are credited with being the first to in-
troduce a weak anchoring in the modeling of nematic liquid crystals. They
proposed adding a penalty term to the free energy in the form
1

Wg = —§w(n . nA)Q, (2.17)
where n 4 is some preferred orientation at the boundary and w is the an-
choring strength. Rapini and Papoular’s form (2.17) has since been widely
used in modeling and its validity indicated by experiments [46].

2.5 Equilibrium equations

Given the free energy associated with elastic, electric, magnetic and bound-
ary effects, the static equilibrium configuration for the director field can be
obtained using the calculus of variations. Variational techniques have been
central in the theoretical treatment of liquid liquid crystals, and a vast and
comprehensive literature exists, including advanced topics such as defects
and variable domains. Herein, a good starting point is Virga’s book [58],
which gives a rigorous and in-depth account of variational theories applied
to liquid crystals. In this section the discussion is limited to a brief summary
of the principles needed in the scope of this thesis.

Consider a liquid crystal on a regular domain €2 with boundary denoted
by 0f). Summarizing the results from the preceding sections, we can write
the total free energy as the functional

Win] = / Wor + W+ Wu)dz + [ Wgds. (2.18)
Q o0

For strong anchoring the boundary energy can be set to zero and replaced
by an a priori assumption n = ng on 0.

Following the principles of classical mechanics, we look for an equilib-
rium solution for the director field n by looking for stationary points of the
energy (2.18) [58]. This is done by considering variations of the director
configurations in the form

ne =n+ cu (2.19)

for some smooth vector w and some small € € [—¢p, €o]. For strong anchoring,
u is chosen in such a way that n. fulfills that boundary condition for any e.
For a given u, n. then gives a path of configurations parameterized by e.
We say that a solution m is a stationary (equilibrium) configuration with
regard to the energy (2.18) if the first variation vanishes for all u, i.e.

d
§W[n + eul = 0. (2.20)
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We note that given strong anchoring, any term in the bulk energy density
that can be written in the form of a pure divergence will not affect the
equilibrium solution. An example of such a term is the saddle-splay term
in the Oseen—Frank energy (2.3). Such a term is often referred to as a null
Lagrangian.
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Chapter

The Fréedericksz transition

The interaction between electromagnetic fields and the director field is an
essential part of liquid crystal theory and a key component in applications.
Herein, the Fréedericksz transition is the classical example. In its simplest
form, it can be seen as a competition between elastic torques resisting dis-
tortions in the director and dielectric torques aligning the director with the
electric field, see Figure 3.1. Consider a one-dimensional liquid crystal cell
of finite length with strong anchoring at the boundary fixing the director
parallel to the surfaces. A voltage difference is applied across the cell, re-
sulting in a torque aligning the director with the electric field in the bulk
of the liquid crystal. For low applied voltages, and hence low electric fields,
the homogeneous unperturbed state remains a stable configuration. How-
ever, when the electric field exceeds a specific threshold, £ > Ep, there is
an abrupt reconfiguration.

The Fréedericksz transition can be observed experimentally due to the
optical birefringence of liquid crystals. This was first done in 1927 by
Fréedericksz! [20] by using applied magnetic fields. In particular, he ob-
served an inverse relationship between the critical field strength and the
sample thickness. Soon after, Zocher [65] was able to formulate a theory for
the transition which predicted the same behavior.

The Fréedericksz transition is omnipresent in the liquid crystal litera-
ture. It is a simple example which illustrates essential features of the inter-
action between a liquid crystal and an external field. At the same time, the
mechanism of the abrupt transition is precisely what allows for switch-on
and switch-off in display devices. Also, the phenomenon allows for the ex-

!The brilliant Russian physicist Vsevolod Fréedericksz’ last name is also often written
Frederiks.

23
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Figure 3.1: Illustration of the Fréedericksz transition. Left: For a low
electric field the anchoring forces dominate and the director field is in a
homogeneous (¢ = m/2) configuration. Right: For electric fields above
the Fréedericksz threshold but below the saturation threshold there is a
competition between electric and anchoring forces leading to a nontrivial
configuration.

perimental determination of certain material constants, since they directly
influence the value of the critical field.

3.1 The bend-splay geometry in 1D

In the following we consider a liquid crystal cell in one spatial dimension
of length L. For simplicity, we will focus the discussion of the Fréedericksz
transition on the bend-splay geometry, i.e. we consider the director

n(z) = (cos(y(x)),sin(¥(x)), 0), (3.1)

where ¢ (x) is the angle between the director and the z-axis. We assume
the director is strongly anchored at the boundary with ¢(0) = ¢(L) = 7/2.

In the bend-splay geometry the elastic energy, obtained by integrating
the Oseen—Frank energy density (2.3) over the domain, becomes

1

L
World] = 5 [ cw)uids (32

where we have introduced the function

c(y) = \/041 cos?(1)) + agsin?(1). (3.3)
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As the name suggests, in the bend-splay geometry the contribution from
the twist term is absent from the elastic energy.

We assume that the applied electric field E is constant through the bulk
of the cell. The electric contribution to the bulk energy is then obtained
from the integral of the energy density (2.10) over the cell, yielding

1

L
WgY] = —250E2/0 (6L +€a cos?()) dz. (3.4)

The equilibrium configuration v (z) is then given as a minimizer of the
energy functional

1

L
W] = 2/0 (P ()2 — eoEB? (g1 + £q cos?(¢))) du, (3.5)

under the constraint of the strong anchoring boundary condition.

The calculus of variations can be used to derive an equation for the
director configuration. Looking for stationary points in the energy (3.5), we
calculate

9
Oe le=0

L
6:0% /0 (P + €d) (Ve + €¢)”
—e0E? (e1 +eacos® (¥ + €9))) du
1 L
_1 /O (2e( + €0)c (W + €8) (W + €6)%¢

2
+ 2% (Y + €0) (Vr + €) P
+ e0ea B2 sin(2(¢) + €0))9) dl“ .

0
W + eg] = e

€

I :
=3 / (—20(1/1)(0(1/1)1#35)3; + e  E? sm(21/1))<z5da? =0,
0
(3.6)
where we have used integration by parts and the strong anchoring at the
boundary. If (3.6) is to hold for all ¢, the director angle needs to satisfy

1 .
o) (c()n), — 5e02aEsin(2) =0, @ € (0,L). (3.7)
A dimensionless version of (3.7) can be derived by introducing the ez-
trapolation length
1 a1

E\ eoeq,
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as well as the dimensionless quantities h = L/§ and

H() = — = 22 in
o) = ) = | feos?(0) + S snl ().

The equilibrium equation (3.7) can then be written in the form

5 EW)x)x — GHsn(2) =0, Xe©1),  (38)

where X = x/L is the unit-scaled length.

3.2 Ciritical threshold for transition

The threshold for which the transition occurs can be approximated using
linear analysis. We introduce § = m/2 — ¢ and linearize the energy (3.5)
around 6 = 0 to obtain

L
W= / (202 — 02, E%0%) da, (3.9)
0
where constant terms have been ignored. Now, following the approach of

de Gennes [13, Ch. 3], we consider strongly anchored perturbations in the
form of the Fourier series

k
o(z) = Zk:ak sin (f) . (3.10)
By inserting (3.10) into (3.9) and integrating over the length of the domain,
we arrive at )
= 1 T €0€a 12
W_2zk:5k <a22L o EL). (3.11)

For the unperturbed state to remain stable, the change in energy associated
with the modes (3.10) must be positive. We can therefore conclude that for

2
s E0€a
>

— E%L 12
W51 7 2 (3.12)

the homogeneous state is linearly stable. Hence, the critical threshold for
the Fréedericksz transition is approximated as

s a9
Er = — . 3.13
F L <€0€a> ( )

N
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Note the inverse relationship between the critical field strength and the cell
length L, as originally observed by Fréedericksz. In terms of the dimension-
less parameter h we obtain the critical value
he = ) Lo (3.14)
o2
The nature of this abrupt transition is illustrated in Figure 3.2. Us-
ing the one-constant approximation, equation (3.8) was solved numerically
for different values of h. Indeed, for h < hgp = m, the solution is a ho-
mogeneous (¢ = m/2) director configuration. When the field strength h
is increased beyond the Fréedericksz threshold hg the solution becomes a
nontrivial symmetric profile with 7/2 < ¢ < .

3.2

3.0
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Figure 3.2: Solutions of (3.8) using aa /a1 = 1, illustrating the Fréedericksz
transition with strong anchoring. For h < hgp = 7 the equilibrium solution
is a constant state ¢ = w/2. When h > hy there is an abrupt reorientation
into a nontrivial even-symmetric state.

3.3 Weak anchoring

Introducing weak boundary anchoring, as described in Section 2.4, will sig-
nificantly affect the modeling of the Fréedericksz transition. Crucially, hav-
ing a finite energy penalty for deviations from the preferred direction allows
for the electric torques to overcome the anchoring torques. Therefore, in the
weak Fréedericksz transition, there are two critical points when changing the
electric field strength, as illustrated in Figure 3.3. For sufficiently low ap-
plied fields, similar as in the standard case, the stable configuration is an
unperturbed homogeneous state with the director aligned with the easy di-
rection at the boundary. When the field is increased beyond the Fréedericksz
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threshold, the equilibrium configuration represents a nontrivial balance be-
tween the different torques involved. If the field is increased further, it will
eventually reach the saturation threshold. Here, electric torques are large
enough to overcome the boundary anchoring, and the stable configuration
is homeotropic.

E < Ep Ep < E < Eg Es < E
—— | —— | ——— |
- -
- \
- \
- Vol } Vol Vol
- T ’ -1 -1
- ’
- V4
—=T | —=T | ——r |

Figure 3.3: Illustration of the weak Fréedericksz transition. Left: For a low
electric field the anchoring forces dominate and the director field is in a
homogeneous (1) = m/2) configuration. Middle: For electric fields above the
Fréedericksz threshold but below the saturation threshold there is a compe-
tition between electric and anchoring forces leading to a nontrivial configu-
ration. Right: For strong electric fields (over the saturation threshold) the
electric forces overcome the anchoring and the configuration is homeotropic

(¥ =0).

Adding boundary energy terms, the total energy for the weak Fréedericksz
cell in the bend-splay geometry becomes

L
Wy] = /0 (P(W)Y2 — eoE? (e1 +eqcos?(¥))) dz

+ %0082(1!1) (le=0Flz=L), (3.15)

where w is the anchoring strength. Using the same technique as before, we
look for equilibrium solutions of (3.15). Calculating the variation, this time
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with smooth test functions ¢ that are nonzero at the boundaries, we obtain

5 AT Y e 2
el W= 5| [ @wr et eon
— 20’ (21 + £q c08”(V) + €9)) ) du
+ %COS2(1/J + €¢) (|x:0+|x=L)
1 [ / 2
- /0 (26(t) + €d)c (4 + €0) (0 + €6)%¢
+ 202 (w + 6(}5) (Z[)z + €¢z)¢x

+ €0€aE2 sin(2(y + €¢))¢) dm‘ =0

— 2 sin (20 + €6)) 6 (lomo+lar)|

1 L
= 2/ (—20(@[))(6(1/))@[}30)96 + eoea E? Sin(21/)))¢)dx
0
+ (P (L) - 5 sin(20(1))) (L)
+ (=@ (0)6.(0) - 5 sin(2(0)) ) $(0) = 0.
(3.16)

If (3.16) is to hold for all test functions ¢, the director angle must satisfy
the equation

(W) (b)), — %sosaEQ sin(20) =0, ze(0,L) (3.17)

with boundary conditions

1

o + = 021(01#) sin(2¢) = 0, z =0, (3.18a)
1 )

Yy — 5 2(0) sin(2¢) = 0, z = L. (3.18b)

We can derive a dimensionless version of this model. By introducing the

extrapolation length
aq
{=—
w

and the number § = %

form

, we can rewrite the equations (3.17)—(3.18) in the

H)E)x)x — ghPsn(2) =0, Xe(01),  (319)
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with boundary conditions

1 g .

vx + 5% sin(2¢y) = 0, X =0, (3.20a)
1

vx — 252(ﬁ¢) sin(2y) = 0, X =1. (3.20b)

The critical transition thresholds for the electric field strength will de-
pend on the anchoring [58, Ch. 5]. As before, the critical field for the
Fréedericksz transition can be analyzed by introducing § = 7/2 — v and
linearizing the energy (3.15) around 6 = 0. In terms of the dimensionless
parameters h and 8 we obtain

1
W6 = /0 (Z‘fegg - h292> dX + 292 (| xzo + | x21) (3.21)

where constant terms have been ignored. The Euler-Lagrange equation
corresponding to the energy (3.21) is

Oxx + %lf@ =0, Xe(01), (3.22)
2
with boundary conditions
aq
Ox + a—ﬁﬁ =0, X ={0,1}. (3.23)
2

An even (w.r.t. the cell centre) solution to (3.22) is given by

6(X) = 6 cos (@h (X _ ;)) . (3.24)

By inserting (3.24) into the boundary equation (3.23) we obtain the con-

straint
a1 Oélh
h=,— t —— . 3.25
,/%ﬁco( M) (3.25)

We refer to the smallest h that satisfies (3.25) as the Fréedericksz threshold
hr.

Similarly, the saturation threshold hg can be obtained by linearizing the
energy around 1 = (. Here we obtain

B

1
W= [ @+ aX =D (gt ). (26)



3.3. Weak anchoring 31

with the corresponding equilibrium equation

Yxx —h*p =0, X €(0,1), (3.27)
with boundary equation

Vvx — B =0, X ={0,1}. (3.28)

An even solution to the bulk equation (3.27) is given by

W(X) = b cosh <h <X - ;)) . (3.29)

As before, we insert the solution (3.29) into the boundary equation (3.28)
to obtain the saturation threshold [47, 58, 48]

hg = [ coth (h25> .

Figure 3.4 shows both critical fields for the weak Fréedericksz transition
for different values of the anchoring strengths 5. Note that in the strongly
anchored limit 8 — oo the critical field hp = w4/ /aq is recovered.

50
40 oy /a; =1.4
! oy /a; =0.6
30 b
@
20
10

5 10 15 20
Figure 3.4: The Fréedericksz threshold hrp and the saturation threshold hg
for the weakly anchored case. The Fréedericksz threshold is shown for the
one-constant approximation (a2/a; = 1) and as/a; =1+ 0.4.

The question of well-posedness for the weak Fréedericksz transition is
more complicated than in the case for strong anchoring. Only recently,
Costa et al. [12] were able to prove the long conjectured existence of a unique
solution 9 € [0,7/2] to the boundary value problem (3.19)—(3.20), where
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the one-constant approximation was assumed. However, in a recent experi-
mental work by Kumar and coworkers [37], director states of odd parity with
regard to the cell center were observed. This interesting result prompted
a theoretical investigation by Bevilacqua and Napoli [2] where the unique-
ness of equilibrium states was investigated on the full interval ¢ € [0, 7]. By
calculating exact solutions in terms of Jacobi elliptic functions, a technique
dating back to the classic work of Nehring [48], they were able to show the
existence of a hierarchy of stable excited director states. These states come
in addition to the even symmetric ground states described by the classic
theory. Moreover, the energy difference between the ground state and the
first excited state is relatively small for certain h and . This indicates that
odd configurations might play an important role in the weak Fréedericksz
transition. This issue will be explored numerically in Paper B.



Chapter

The dynamic problem in the
bend-splay geometry

So far we have only considered static equilibrium solutions for the director
configuration. In what follows, we will apply similar energy variational
principles to formulate a dynamic theory. We will restrict ourselves to the
bend-splay geometry, as described in Section 3.1. Specifically, we assume a
director field in the form

n(r,t) = (cos(y(r,t)),sin(¢(r,t),0), (4.1)

where 1(r,t) denotes the angle between the first coordinate axis and the
director. In this case, the twist term of the Oseen—Frank elastic energy (2.3)
will vanish identically.

The classic macroscopic description of the dynamic flow of liquid crystals
was developed by Ericksen [15, 16] in the early 1960s and later completed
by Leslie [38, 39] and Parodi [52]. In their full form, the Leslie-Ericksen
equations are a set of balance laws and constitutive relations for mass and
momentum, involving both the fluid flow and the director field. Starting
with the experimental verifications by Fishers and Fredrickson [18], this
model has since been firmly established as the accepted theory for liquid
crystal flow.

In this work we will assume a stationary flow field and focus on the dy-
namics of the director. This warrants a simpler approach than the frame-
work of Leslie and Ericksen. Using principles of classical mechanics, we use
an energy variational approach to derive the governing equations for the di-
rector angle . The relationship between the governing equations derived by

33
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this method and Leslie—Ericksen theory will be briefly discussed in Section
4.3

4.1 The dynamic energy balance

In order to formulate a dynamic theory, the energy equation (2.18) must be
appended with the effect of inertia and dissipation. If the liquid crystal is
assumed to consist of rigid rods, the kinetic energy density associated with
rotational moment of inertia is given by

1 1

where o > 0 is an inertial material constant. As an example, for the nematic
liquid crystal MBAA, experiments indicate o ~ 10~ 13 kgm™! [21].

Liquid crystals are in general viscous, resulting in a loss of macroscopic
energy (entropy production) due to shear stresses, similar to what is seen in
isotropic fluids. However, in the case of liquid crystals the viscous stresses
will in general depend on the relative orientation of the director field. In
addition, as discussed by e.g. de Gennes [13], there is entropy production as
a result of the rotation of the optical axis of the molecules relative to the
surrounding fluid. Under the present assumption of a stationary flow field,
only the latter effect comes into play. As explained by e.g. Stewart [56], this
dissipation per volume is proportional with the square of the rate of change
of the director, which under the assumption (4.1) is given by

D = Srlnef* = S wvf, (4.3)

where k > 0 is a viscosity coefficient. The material constant x can be
experimentally determined, and has been measured to be x = 0.1093 Pas
at T'= 25°C for MBAA and x = 0.0777 Pas at T'= 26 °C for 5CB [36].

The full energy balance for the director field can now be assembled.
By including the contributions from the elasticity, electric fields, magnetic
fields and boundary anchoring discussed in Chapter 2, we assert the energy
balance equation

d

1
— (/ <U|nt’2+WoF+WE+WM> dox + Whg dS)
dt \ Jg \ 2

0N
1

:—n/\nt|2da:. (4.4)
2 Ja
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For typical nematic liquid crystals, dissipative effects will dominate over
inertial forces. It is for this reason the inertial energy is often ignored all
together when modeling nematics [21, 57]. However, as was noted early
by Leslie [39], the effect of molecular rotational inertia might influence the
dynamics when the director is subject to large accelerations. Speaking in
general terms, dissipation is a long-time effect while inertia is more im-
portant on smaller time scales. This suggests that the inclusion of inertia
might be warranted for example in the modeling of liquid crystals under
high-frequency mechanical oscillations [59] and liquid crystal acoustics [33].
Also, as discussed by Yun [60], the effect is also measurable when a liquid
crystal is under the influence of a quickly oscillating electromagnetic field.
In the present discussion we will keep both the effect of inertial and dissi-
pation in the energy balance for completeness. Paper A will be devoted to
an in-depth numerical analysis of the influence of these on the dynamics of
the Fréedericksz transition.

4.2 Variational principles

Variational principles are a cornerstone of the classic static theory of nematic
liquid crystals [58]. Similar techniques can be applied to obtain governing
equations for the evolution of the director field, given the energy balance
equation (4.4).

Hamilton’s principle of classical mechanics describes the motion of a
conservative system [24]. Let the system be described by n generalized
coordinates qi, - - - , g, with a Lagrangian

L= L(q17' s qny g, 7QH,t7t)

depending explicitly only on the coordinates ¢;, their time derivatives g;
and time t. Hamilton’s principle states that the evolution of the system
between times tg and t; is given by the path in configuration space for
which the time integral of the Lagrangian is stationary. Specifically, the
mechanical system follows the path where

t1
5/ L(q17 aQn7QLt7"' 7Q7L,t7t)dt:07 (45)
t

0

where ¢ denotes the first variation.

Example 1 (Variational wave equation) As an example we can con-
sider the evolution of a fully elastic (conservative) nematic liquid crystal on
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an infinite domain. Further, we disregard any coupling with electromagnetic
fields. Here, the degrees of freedom are the components of the director field
n and the Lagrangian is given by

1
L= / (a|nt|2 — Wor(n, Vn)) de.
R3 \ 2
Using variations of the director field in the form
ne=mn -+ cu,

where w decays at infinity, we obtain

5 t1 1 9 ” .
Ldt=— 1 |
/to O€ le=0 /to /IRS 20 (nt + eut) ('nt + eut)

—Wor(n + eu, Vn + GVu)> dx dt

h OWor OWor
_ _ _ dee dt
/to /Rs (U (s + ewy) w on v ovVn Vu |dz

h OWor OWor
— _ — . dedt = 0.
/to /Rg< oMy an +V 8Vn uar 0
(4.6)

In the above, we used integration by parts together with the decaying director
at infinity to obtain the last equality. If (4.6) is to hold for any wu, the
vartational wave equation

e=0

Wor v. MWor _

on oVn 0 (4.7)

ony +
must be satisfied in the whole domain. The equation (4.7) in the bend-splay
geometry will be discussed in the 1D and 2D case in Sections 4.4 and 4.5,
respectively.

Hamilton’s principle as described above gives the equations of motion
for a conservative system. In order to obtain evolution equations satisfying
the energy law (4.4) for k > 0, a different approach has to be adopted. The
question of how to describe nonequilibrium dynamics of mechanical systems
is indeed an old one, and remains to some extent an active field of research
to this date. Here we consider a dissipative variational formulation based
on the principle of maximum entropy production. This approach can be
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traced back to Onsager’s early work on nonequilibrium dynamics [49, 50],
and comes in many different forms depending on the particular field in
question. Martyushev and Seleznev [43] gives an excellent review of the
use of this technique in the physical sciences. Maximov [44] shows how the
Lagrangian can be modified to account for the dissipation, allowing for a
similar formalism as in the conservative case. A common approach, which
we will use in this work, involves adding a “dissipative” force to the balance
equation given by the least action principle. This method has been used
by Hyon et al. [32] to described the dissipative dynamics of complex fluids,
and can be broken down into three steps:

1. Hamilton’s principle (4.5) is used to calculate the sum f, of the con-
servative forces

2. The “dissipative” forces f; are given by the variation

t1
) Ddxedt=0
to R3

3. The evolution equation given by the force balance

fc:fd

will then satisfy the dissipative energy law.

4.3 Relationship to the classic Leslie—Ericksen the-
ory

It is instructive to look at the relationship between the comprehensive

Leslie-Ericksen theory and the simplified mechanical principles used in this

text. Indeed, for consistency, the latter should follow from the former. The

classic Leslie-Ericksen equations for the dynamic incompressible flow a ne-
matic liquid crystals with constant density p are [56]:

Conservation of mass

V-u=0 (4.8)
Conservation of linear momentum

pu+on-Vn=pF +G -Vn+V. .1 (4.9)
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Conservation of angular momentum

OWor LY. OWor

ocn+n=G+g-— on 9

(4.10)

Here a dot denotes the usual material derivative
w:=w; +u-Vw.
In the above, we have the following variables and parameters:
e u € R3: Velocity field of the liquid crystal flow
e F c R3: Vector of external body forces

G € R3: Vector of generalized body forces

A: Lagrange multiplier corresponding to the constraint [n| =1

o 7=—pl— paavé?f Vn + 7: Stress tensor

e p: Pressure of the liquid
e 7R3 x R3: Viscous stress tensor

In order to define the viscous stress tensor £ and the vector g, we intro-
duce the rate of strain tensor and the vorticity tensor, given by

1

A=_(Vu+(Vu)) and Q= (Vu-(Vu)T),

DO |
N | =

respectively. Using these we define the co-rotational time flux
N =n—Qn,

observing that the constraint n-n = 0 implies nn- N = 0. In terms of these
quantities, the viscous stress tensor is given by [56, Eq. (4.121)]

T=pup (MTAn)n@n+ e N @n + usn @ N + us A
+usAn@n+pusn® An, (4.11)

where u;, 42 € 1,--- ,6, are viscosity constants. There are several constraints
on the constants y;, including

Mmi=p3—p22>0
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due to the positivity of the dissipation function [56, Eqs. (4.91)—(4.95)]. In
addition Parodi [52] derived

Y2 1= M3+ p2 = U6 — Us
from Onsager’s reciprocity relations. The vector g is given by [56, Eq. (4.122)]
g=-71N —1An.

In order to verif