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Abstract

We consider a variational wave equation giving the evolution of the director field of a
nematic liquid crystal. The nonlinearity of this wave equation is strongly dependent on
the material constants describing the elasticity of the system. Using the multi-level Monte
Carlo (MLMC) Finite-Volume sampling method we quantify the influence of uncertain
material constants and uncertain initial data on the initial-value problem. The MLMC
scheme involves sampling solutions of the Stochastic PDE on a hierarchy of nested meshes.
We present results from uncertainty quantification on waves in the director field in both 1D
and 2D. Herein, we observe that 5-10 times the computational work is required to achieve
a desired accuracy in the estimated mean when using a standard Monte Carlo method
compared to when using the MLMC scheme.

Keywords: Uncertainty quantification, Nematic liquid crystals, Nonlinear waves,
Multi-level Monte Carlo

1. Introduction

The term liquid crystal refers to a state of matter with both crystalline characteristics as
well as properties normally associated with liquids. For specific materials, the liquid crystal
phase can be observed in certain ranges of temperature, mixture concentrations, or both.
Nematic liquid crystals usually consists of elongated molecules for which it is energetically
favorable for neighboring molecules to align. Therefore, even though the molecules are free
to flow, one can observe macroscopic correlation of the orientation of their long axis. Since
the refractive index of the material depends on the molecular orientation, and since the
orientation can be influenced by external electromagnetic fields, nematic liquid crystals
have seen widespread use in display devices.

Under the assumption of constant local degree of orientation, the state of a nematic
liquid crystal is traditionally represented in terms of two linearly independent vector fields:
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the velocity field and the director field. The latter is a map

n : R3 × [0,∞)→ S2

from Euclidean space to the unit ball. In the present work we assume a stationary flow
field and will focus on the dynamics of the director field.

The dynamics of the director field can be derived using an energy variational approach.
Herein, the elastic energy density associated with distortion of the director field is given
by the Oseen–Franck functional

W(n,∇n) = α |n× (∇× n)|2 + β (∇ · n)2 + γ (n · (∇× n))2 . (1.1)

It can be shown that (1.1) is the general form of an energy that is quadratic in ∇n and
invariant under the transformation n → −n [5]. The constants α, β and γ are material
constants of the liquid crystal, and are associated with the three basic types of deforma-
tions of the medium; bend, splay and twist; respectively. Assuming zero dissipation, the
evolution of the director n is then given by the principle of least action

δ

∫∫ (
n2
t −W(n,∇n)

)
dx dt = 0, n · n = 1. (1.2)

Standard calculations reveal that the Euler-Lagrange equation associated with (1.2) is the
variational wave equation

ntt =
div (W∇n(n,∇n))−Wn(n,∇n)

2
.

A simple one-dimensional model can be derived by assuming that the director field
depends on a single space variable x, and, that the director field n in confined to the x-y
plane. The director can then be written as

n = (cosu(x, t), sinu(x, t), 0).

Here, u denotes the angle between the long axis of the molecules and the x-axis. The
variational wave equation describing the dynamics of planar waves in 1D is then given by

utt − c(u) (c(u)ux)x = 0, (1.3)

where

c(u) =
√
α cos2(u) + β sin2(u)

is the nonlinear wave speed. The equation (1.3) was first introduced by Saxton [22], and
has since been subject the numerous studies due to its interesting nonlinear properties
[13, 9, 12]. Recently, there has also been some effort towards making efficient, stable and
convergent numerical schemes for the initial-value problem [11, 15].

A similar model can be derived in 2D by asserting

n = (cosu(x, y, t), sinu(x, y, t), 0) .
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In this case, the variational wave equation takes the form

utt − (T (u)∇) · (T (u)∇u) = 0 (1.4)

with

T (u) =

(√
α cos(u)

√
α sin(u)√

β sin(u) −
√
β cos(u)

)
.

The material constants α and β play a crucial role in the nonlinear dynamics of the
planar waves described by (1.3) and (1.4). In the modeling of nematic liquid crystals, the
value of these can be subject to uncertainties based on e.g. errors bars in their experimental
measurement and simplifications in their dependence on temperature [6]. Moreover, one
might wish to study the dynamics of the director field over a range of temperatures. To
this end, the problems (1.3) and (1.4) can be recast as the stochastic initial-value problems

utt − c(u, ω) (c(u, ω)ux)x = 0, (x, t) ∈ R× [0, T ], (1.5a)

u(x, 0) = u0(x, ω), x ∈ R, (1.5b)

ut(x, 0) = u1(x, ω), x ∈ R, (1.5c)

and

utt − (T (u, ω)∇) · (T (u, ω)∇u) = 0, (x, y, t) ∈ R2 × [0, T ], (1.6a)

u(x, y, 0) = u0(x, y, ω), (x, y) ∈ R2, (1.6b)

ut(x, y, 0) = u1(x, y, ω), (x, y) ∈ R2, (1.6c)

where ω ∈ Ω, for some probability space (Ω,F).
Uncertainty quantification for solutions of partial differential equations has been an

active field of research in recent years [24, 4, 17, 21]. In practical modeling, the physical
parameters, initial data, and boundary conditions are often all subject to uncertainty.
How to efficiently determine the effect this has on the solutions of nonlinear initial-value
problems is a nontrivial issue of great interest in applied sciences and engineering. This is
especially true for hyperbolic partial differential equations where solutions might develop
shocks and discontinuities [24, 21].

An important class of methods for uncertainty quantification for PDEs is the so-called
non-intrusive methodology [2]. The main benefit of these types of schemes is that existing
code for solving the deterministic problem can be used with few or no changes. Herein, the
Monte Carlo sampling method is one of the most notable examples. It relies on sampling
the underlying probability space for the initial-value problem, and in each instance solving
the deterministic PDE. The ensemble of solutions can then be used to estimate statistical
quantities such as the mean and variance.

While non-intrusive and simple to implement, the Monte Carlo sampling method suffers
from a low rate of convergence [18]. This issue can be detrimental to performance, especially
for uncertainty quantification for PDEs in high spatial dimensions. Here, obtaining even
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a single deterministic solution can be computationally expensive. Several techniques have
been proposed to assuage the performance issue of Monte Carlo methods. Examples include
variance reduction [8] and quasi Monte Carlo methods [7]. In this work we will focus
on the multi-level Monte Carlo method, first introduced by Heinrich [10] for numerical
quadrature. It has since then been successfully applied to hyperbolic conservation laws
in conjunction with finite-volume methods [18, 19, 20]. The method relies on performing
Monte Carlo sampling on a hierarchy of nested computational grids. By drawing more
samples from realizations on coarser grids, where solving the PDE numerically is cheaper,
one can efficiently estimate the statistics of the problem.

The asymptotic efficiency of the MLMC method has been rigorously proven for scalar
conservation laws, and its performance demonstrated for systems of conservation laws [2].
The potential applicability of this scheme for uncertainty quantification for other nonlinear
models in the applied sciences is therefore of great interest. The main purpose of this work
is to perform uncertainty quantification for nonlinear waves in liquid crystals in 1D (1.5)
and 2D (1.6), using both the MC and MLMC methods. By doing this, we will demonstrate
that significant gains in efficiency can be obtained by using MLMC for these variational
wave equations. This has, to the best of the authors’ knowledge, so far not been the subject
of much study.

The paper is organized as follows: Section 2 concerns the deterministic solution of the
variational wave equation in 1D and in 2D. Herein, we derive a simple finite-difference
scheme that by design preserves the energy stability of the model. In Section 3 we outline
how the MC and MLMC methods can used in conjunction with the deterministic solver to
perform uncertainty quantification. Section 4 and 5 contains the numerical experiments for
1D and 2D planer waves, respectively. Here, we perform uncertainty quantification using
both the basic MC method and the MLMC scheme, and compare their error and efficiency.

2. A Hamiltonian finite-difference method

In order to give a deterministic solution of the initial-value problems (1.5) and (1.6),
we employ a finite difference scheme based on the Hamiltonian formulation

utt = −δH
δu

. (2.1)

This gives an efficient and robust numerical method that, on the semi-discrete level, re-
spects the underlying energy stability of the model. For time integration we will employ
the Leapfrog method.

2.1. The 1D model

In the 1D case (1.3), we have

δH

δu
= −c(u) (c(u)ux)x = c(u)c′(u)u2x −

(
c2(u)ux

)
x
. (2.2)
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For a spatial computational domain [x0, xN ] we denote xi = x0 + i∆x for i ∈ {0, · · · , N}.
Any grid function u(x, t) can then be written ui(t) = u(xi, t). Further, by defining the
central difference operator as

D0ui :=
ui+1 − ui−1

2∆x
, (2.3)

we can write down the semi-discrete numerical scheme

(ui)tt = c(ui)c
′(ui) (D0ui)

2 −D0

(
c2(ui)D0ui

)
. (2.4)

It is straightforward to show that this scheme preserves a discrete version of the energy
[15]. Specifically, at the semi-discrete level, we have

d

dt

(
∆x

2

N∑
i=0

(
(ui)

2
t + c2(ui) (D0ui)

2)) = 0 (2.5)

given periodic boundary conditions or decaying data.

2.2. The 2D model

For the 2D equation (1.4), we have,

δH

δu
= c(u)c′(u)u2x −

(
c2(u)ux

)
x

+ b(u)b′(u)u2y −
(
b2(u)uy

)
y

+ a′(u)uxuy − (a(u)uy)x − (a(u)ux)y

= −c2(u)uxx − c(u)c′(u)u2x − b2(u)uyy − b(u)b′(u)u2y − a′(u)uxuy − 2a(u)uxy

= −c(u) (c(u)ux)x − b(u) (b(u)uy)y − a
′(u)uxuy − 2a(u)uxy.

Similarly as before, we can for a computational domain [x0, xN ]× [y0, yN ] denote uij(t) =
u(xi, yj, t), where xi = x0 + i∆x and yj = y0 + j∆y. Again, we define central difference
operators

Dx
0uij :=

ui+1,j − ui−1,j
2∆x

and Dy
0uij =

ui,j+1 − ui,j−1
2∆y

. (2.6)

This allows us to write down the semi-discrete finite-difference scheme

(uij)tt + c(uij)c
′(uij)(D

x
0uij)

2 −Dx
0

(
c2(uij)D

x
0uij

)
+ b(uij)b

′(uij)(D
y
0uij)

2 −Dy
0

(
b2(uij)D

yuij
)

+ a′(uij)D
x
0(uij)D

y
0(uij)−Dx

0 (a(uij)D
y
0uij)−D

y
0 (a(uij)D

x
0uij) = 0.

(2.7)
Note that in the above we have assumed that the grid parameter N is the same in the x
and y dimensions. This is a simplification made for the purpose of this exhibition, and not
a limitation inherent to the scheme.

The scheme (2.7) can be shown to preserve a discrete version of the energy of the model
[1]. Specifically, solutions fulfill

d

dt

(
∆x∆y

2

∑
i,j

(uij)
2
t + c2(uij) (Dx

0uij)
2 + b2(uij) (Dy

0uij)
2 + 2a(uij)D

x
0(uij)D

y
0(uij)

)
= 0

given periodic boundary conditions or decaying data.
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3. Uncertainty quantification using multi-level Monte Carlo

Given a stable and efficient numerical scheme for solving the deterministic initial value
problems (1.3) and (1.4), a Monte Carlo (MC) type scheme can be applied to perform
uncertainty quantification (for instance, to estimate the mean value and the variance of
the solution u) for the stochastic initial-value problems (1.5) and (1.6).

3.1. The Monte Carlo Finite-Volume method

The Monte Carlo Finite-Volume sampling method can be summed up to three basic
steps:

1. DrawM independent identically distributed samples of αk, βk, uk0 and uk1 for k = 1, . . . ,M .

2. For each realization {αk, βk, uk0, u
k
1} we solve the initial-value problem using the deter-

ministic numerical method with a fixed mesh. The numerical solutions are denoted
by uk, k = 1, . . . ,M .

3. Estimate the expectation of the random solution field by calculating the sample mean

EM [u] :=
1

M

M∑
k=1

uk. (3.1)

Higher statistical moments such as the variance can also be estimated [23].

Different strategies exist for choosing the number of samples M for a given mesh number
N [23]. In this work we will use M = N for all MC calculations.

3.2. The multi-level Monte Carlo Finite-Volume method

The deterministic solution of the initial value problem can be expensive, especially in
higher dimensions. Indeed, calculating a large number of samples using a very fine mesh can
in many cases be computationally infeasible. The multi-level Monte Carlo Finite-Volume
(MLMC) method is one way of assuaging this concern. It relies on taking Monte Carlo
samples on a hierarchy of nested grids. By taking more samples on the coarser grid, where
the numerical approximation of the deterministic problem is computationally cheaper, one
can obtain the same order of accuracy at a significantly lower cost compared to the MC
method.

In this work we use Cartesian grids, and for the level ` ∈ {0, · · · , L} we denote

∆x` = 2−`∆x0,

for some fixed coarsest mesh size ∆x0. For simplicity, we assume equal spatial mesh sizes
in both dimensions for the 2D model. The MLMC method consists of the three main steps:

1. For each level ` ∈ {0, . . . , L}, draw a level-dependent number M` independent iden-
tically distributed samples αk

` , βk
` , uk0,` and uk1,` for k = 1, . . . ,M`.
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2. For each realization {αk
` , β

k
` , u

k
0,`, u

k
1,`} of the parameters solve the deterministic initial

value problem. The numerical solutions are denoted by uk` , k = 1, . . . ,M`.

3. Estimate the expectation of the random solution field by using the estimator

EL[u] := EM0 [u0] +
L∑

`=0

EM`
[u` − u`−1], (3.2)

where EM [u] denotes the MC estimator (3.1). Higher statistical moments can be
calculated in a similar manner [23].

There are different strategies for choosing the level-dependent number of samples M`.
In this work we will use

M` = ML22(L−`),

a choice designed to equilibrate the error contributions from each successive level, given
a first-order deterministic solver [23]. Note, however, that rigorous error estimates for
MLMC only exist for scalar conservation laws [16].

For the reader’s reference, we emphasize that the MLMC estimates in the rest of this
paper are all determined by the following list of parameters:

ML Number of samples on the finest mesh level
NL Number of cells in each direction in finest mesh
L Number of levels of refinement

3.3. Computation of sample statistics

When the number of samples is large, storage saving techniques should be used when
assembling statistical estimates. For efficient and stable computation of the mean and
variance we employ the following on-line algorithm due to Knuth [14]: Let ū0 = 0 and
Φ0 = 0. Given samples ui, i ∈ {1, . . . ,M} we can proceed iteratively to calculate

ūi =
i∑

j=1

uj − ūj−1

i
, Φi = Φi−1 +

(
uj − ūj−1

) (
uj − ūj

)
.

Unbiased estimates for the mean and variance of the population are then given by

EM [u] = ūM and VarM [u] =
ΦM

M − 1
,

respectively. This allows us to update the statistical estimates after calculating each in-
dividual samples, eliminating the need for storing all solutions and thereby significantly
reducing memory requirements.

Since individual samples only interact when combining the statistical estimates, the MC
and MLMC methods are both highly parallelizable. In practice, a parallel implementation
will require us to be able to combine statistical estimates from smaller subsets of samples.
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To this end, the following algorithm proposed by Chan et al. [3] can be used: Let EMA
[u]

and EMB
[u] be estimates for the mean for sample sizes MA and MB, respectively, with

M = MA +MB. The combined mean can then be calculated as

EM [u] =
MAEMA

[u] +MBEMB
[u]

M

and for the variance

ΦM [u] = ΦMA
[u] + ΦMB

[u] +
MAMB

M
(EMA

[u]− EMB
[u])2 ,

with

VarM [u] =
ΦM [u]

M − 1
.

3.4. L2 stability for the MC mean estimator
The equation (1.3) can be derived from an energy law. Hence, it inherits an L2-stability

from the underlying energy functional. It is straightforward to verify that smooth solutions
u(x, t) of (1.3) satisfy

d

dt
Eu(t) =

d

dt

∫ (
u2t + c2(u)u2x

)
dx = 0.

For positive (and nonzero) α and β this implies∫ (
u2t + min{α, β}u2x

)
dx ≤ Eu(t) ≤

∫ (
u2t + max{α, β}u2x

)
dx (3.3)

giving a basic stability estimate. In Section 2 we showed that this energy principle is shared
by the deterministic solvers at the semi-discrete level.

We can verify that this stability also holds for the MC mean estimator as follows:
Assume that u and v are two smooth solutions of (1.3), thus satisfying (3.3). For the mean
w = (1/2)(u+ v) we then have

Ew(t) =

∫ (
w2

t + c2(w)w2
x

)
dx =

1

4

∫ (
u2t + c2(w)u2x

)
dx+

1

4

∫ (
v2t + c2(w)v2x

)
dx

+
1

2

∫ (
vtut + c2(w)uxvx

)
dx

≤ 1

4

∫ (
u2t + max{α, β}u2x

)
dx+

1

4

∫ (
v2t + max{α, β}v2x

)
dx

+
1

2

∫
(|vtut|+ max{α, β}|uxvx|) dx

≤ 1

4

∫ (
u2t + max{α, β}u2x

)
dx+

1

4

∫ (
v2t + max{α, β}v2x

)
dx

+
1

4

∫ (
u2t + v2t + max{α, β}(u2x + v2x

)
dx

=
1

2

∫ (
u2t + max{α, β}u2x

)
dx+

1

2

∫ (
v2t + max{α, β}v2x

)
dx.

(3.4)
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That the same holds for the MC mean estimator (3.1), i.e.

EEM [u](t) ≤
1

M

M∑
k=1

∫ ((
ukt
)2

+ max{α, β}
(
ukx
)2)

dx,

follows by induction.
An analogous result for the 2D equation can be obtained in an analogous way.

4. 1D planar waves

In the following, we investigate the propagation of nonlinear 1D planar waves with un-
certain, uniformly distributed elastic constants. Specifically, we let the material constants
be independent identically distributed variables with

α ∼ U(0.3, 0.7), β ∼ U(1.3, 1.7), (4.1)

and study the initial value problem (1.5) with

u0(x) =
π

4
+ exp(−x2) (4.2a)

u1(x, ω) = −c(u0, ω)u0,x(x). (4.2b)

Notice that this introduces uncertainty in both the flux term as well as in the initial data.
Figure 4.1 shows the estimated mean and standard deviation of the director field using

the MC method with M = N = 512. Figure 4.2 shows the same estimates, but using the
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√

VarM [u]

EM [u] +
√

VarM [u]

(a) t = 5
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(b) t = 10

Figure 4.1: The mean and standard deviation of the director field for the initial value
problem (4.2) with α and β given by (4.1). Calculated using the MC method with M =
N = 512.
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Figure 4.2: The mean and variance of the director field for the initial value problem (4.2)
with α and β given by (4.1). Calculated using the MLMC method with ML = 64, L = 7
and NL = 8192.

MLMC method with ML = 64, L = 7 and NL = 8192. From the results, it is clear that
the uncertainty in the elastic constants introduce uncertainties in both the magnitude and
position of the propagating disturbance. The error bars for the director field, shown in the
filled yellow area, are of the order of ∼ 10%.

The MLMC estimates, the variance in particular, are more irregular than their MC
counterparts, as can be seen in Figure 4.2. This is not unexpected in regions where the
solution may vary greatly between levels of mesh refinement, e.g. near shocks and discon-
tinuities.

4.1. Convergence and efficiency

We estimate the order of convergence of the MC and MLMC methods for the initial
value problem (4.2).

Since the MC and MLMC estimators are themselves random, the root mean square
error estimator is employed to extract statistical convergence rates from the fluctuating
error measurements. Let Eref[u] be an accurate reference solution, calculated using the
MLMC scheme with a high accuracy. To estimate the error of an MC or MLMC estimator
EM [u] we calculate a sequence of estimates

E
(k)
M [u], k = 1, · · · , K

for some number K. We then define the root-mean-square relative error as

E =

√√√√ 1

K

K∑
k

(
E (k)M

)2
, (4.3)
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where

E (k)M =
‖Eref[u]− E(k)

M [u]‖L2

‖Eref[u]‖L2

.

Figure 4.3 shows the error in the mean and the standard deviation for both the MC and
MLMC schemes using K = 20. For a given mesh refinement N , the MC scheme outper-
forms the MLMC scheme. This is not unexpected, since the MC estimator is a combination
of a large number of samples on the finest grid. However, in terms of computational effi-
ciency, we see a clear advantage of using the MLMC scheme. In fact, the results show that
obtaining the same accuracy in the mean using the MC scheme requires approximately 8
times the computational effort. For the standard deviation the gain is not as big, but the
MLMC scheme is also more efficient in this case.
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Figure 4.3: Error of the mean and standard deviation for the MC and MLMC method
for the initial value problem (4.2) at t = 5. The reference solution was calculated using
ML = 64, NL = 8196 and L = 7. The error ε was calculated using the estimator (4.3)
with K = 20. Dashed lines indicate expected orders of convergence for scalar conservation
laws.
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5. 2D planar waves

In what follows, we investigate the evolution of the 2D variational wave equation given
uncertain elastic constants α and β. For the deterministic numerical solution of the initial
value problem (1.6) we use the Hamiltonian scheme described in Section 2.2.

5.1. Gaussian disturbance

We consider the following initial data, representing a Gaussian disturbance to an ini-
tially homogeneous initial state:

u0(x, y) = exp
(
−
(
x2 + y2

))
(5.1a)

u1(x, y, ω) = −c(u0, ω)u0,x(x, y) (5.1b)

Furthermore, we let the elastic constants be independent identically distributed random
variables given by

α ∼ U(0.3, 0.7) and β ∼ U(1.3, 1.7). (5.2)

Note that this introduces uncertainty in both the governing equation as well as in the
initial data.

Figure 5.1 shows the mean and the standard deviation of the director angle and its
gradient at t = 10, calculated using the Monte Carlo method withM = N = 512. Similarly,

(a) Mean (b) Standard deviation

Figure 5.1: The mean and standard deviation of the director field u at t = 10 for the initial
value problem (5.1). Calculated using the MC method with M = N = 512.

Figure 5.2 shows the mean and the standard deviation calculated using the MLMC scheme
with 6 levels (L = 5), ML = 8 samples on the fines level with 2048 × 2048 grid cells.
The results illustrate the effect of the nonlinearity. There is a clear preferred direction
of propagation, and herein a steepening of the slope can be observed. We also observe
that the uncertainty is greatest closest to this propagation front, and the relative standard
deviation here is about ∼ 10%.
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(a) Mean (b) Standard deviation

Figure 5.2: The mean and standard deviation of the director field u at t = 10 for the
initial value problem (5.1). Calculated using the MLMC method with ML = 8, L = 5 and
NL = 2048.

5.2. Convergence and efficiency

We study the convergence of the MC and MLMC methods using the initial value prob-
lem (5.1). As a reference we use the solution displayed in Figure 5.2. Similarly as before,
we use a root-mean-square estimate (4.3) for the error.

Figure 5.3 shows the error (4.3) for both the MC and MLMC schemes using K = 20.
For a fixed grid accuracy N the MC scheme outperforms the MLMC scheme, which is
not unexpected. However, as in the 1D case, the efficiency of the MLMC scheme (error
per CPU second) is far superior. In fact, obtaining a lower error in the mean with the
MC method requires more than five times the computational efforts. For the standard
deviation the difference is not as obvious, but also here the MLMC scheme is superior in
terms of efficiency.

5.3. Relaxation from standing wave

A second test case is given by the initial data

u0(x, y) = 2 cos(2πx) sin(2πx) (5.3a)

u1(x, y) = sin(2π(x− y)) (5.3b)

on (x, y) ∈ [0, 1]× [0, 1] with periodic boundary conditions. Initially, the director field is
a standing wave, something that can be caused by the influence of e.g. an electric field or
mechanical vibrations. At t = 0 the external influence is switched off, and the dynamics
of the director field is governed by the elasticity of the liquid crystal.

We consider the stochastic initial value problem consisting of (1.4) with the initial data
(5.3). The elastic constants are assumed to be identically uniformly distributed as

α ∼ U(0.45, 0.55) and β ∼ U(1.45, 1.55). (5.4)
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Figure 5.3: Error of the mean and standard deviation of the director field u for the MC and
MLMC method for the initial value problem (5.1). The reference solution was calculated
using ML = 8, NL = 2048 and L = 6. The error ε was calculated using the estimator (4.3)
with K = 20. Dashed lines indicate expected orders of convergence for scalar conservation
laws.
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Figure 5.4 shows the estimated mean and standard deviation of the director field at t = 2
using the MC method with M = N = 512. Similarly, Figure 5.5 shows the estimated

(a) Mean (b) Standard deviation

Figure 5.4: The mean and standard deviation of the director field u at t = 2 for the initial
value problem (5.3). Calculated using the MC method with M = N = 512.

mean and standard deviation of the director field using the MLMC method with ML = 8,
L = 5 and NL = 2048. The results show the sinusoidal initial wave deteriorating into a
more irregular pattern, while the mean still maintains the same periodicity. The variance
is clearly largest between the local maxima, indicating that the elastic constants strongly
affect both the position and shape of these.

5.4. Convergence and efficiency

We can study the convergence of the MC and MLMC methods also for this case.
Figure 5.6 shows the RMS error (4.3) at t = 2 for both the MC and MLMC schemes using
K = 20. The results read similar as before. In terms of error per grid size the MC method
is superior. However, since most of the sampling in the MLMC method is done on coarse
grids, the efficiency of this method is much greater. Specifically, Figure 5.6 shows that
obtaining the same error in the mean using the MC method requires more than 10 times
the computational effort.

6. Summary

We have studied the evolution of a class of nonlinear waves in the director field of
nematic liquid crystals with uncertain elastic constants and uncertain initial data. Herein,
we perform uncertainty quantification on the stochastic initial-value problem in 1D and
2D using the Monte Carlo and the multi-level Monte Carlo methods. As the deterministic
solver we have used a Hamiltonian finite-difference scheme designed to preserve the energy
stability inherent to the model.
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(a) Mean (b) Standard deviation

Figure 5.5: The mean and standard deviation of the director field u at t = 2 for the
initial value problem (5.3). Calculated using the MLMC method with ML = 8, L = 5 and
NL = 2048.

The results, both in 1D and 2D, indicate that the MLMC method can be applied
successfully to estimate statistical quantities for models of this kind. In terms of error
per computational effort, we observed that the MLMC clearly outperformed the regular
MC method. In particular, the results show that in order to obtain the same error in the
expectation, the MC method requires 5-10 times the computational work. The efficiency
of the MLMC method for the estimation of the variance is lower. However, the obtained
numerical results show a clear advantage from using the MLMC scheme also here.
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