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Abstract. We consider a general Euler-type two-phase flow model with re-

laxation towards phase equilibrium. We provide a complete description of

the transition between the wave dynamics of the homogeneous relaxation sys-
tem and that of the local equilibrium approximation. This transitional wave

dynamics is fully determined by two parameters; a dimensionless stiffness pa-

rameter and the ratio of the sound velocities in the stiff and non-stiff limits.
We prove the Galilean invariance of the transitional waves, and show that

their stability criterion is precisely the sub-characteristic condition. We fur-

ther prove a maximum principle in the transitional regime, similar in spirit
to the subcharacteristic condition; the transitional wave speeds can never ex-

ceed the largest wave speed of the homogeneous relaxation system. Finally,
we identify the existence of a critical region of wave numbers where the sonic

waves completely disappear from the system. This region corresponds to the

casus irreducibilis of the describing cubic polynomial.

Relaxation; sub-characteristic condition; phase transfer.

1. Introduction

Based on the classical approach of Baer-Nunziato[4], a common way of modeling
non-equilibrium two-phase flows is through hyperbolic relaxation models[2, 8, 14,
18, 19]. Recently, there has been significant interest in models for cavitation where
a metastable gas-liquid mixture is moving with a single velocity[17, 20, 24].

In this paper, we consider 1D models of this type where thermal and mechanical
equilibrium are assumed. Such simplified models have applications to two-phase
pipeline flow relevant for environmental engineering and the petroleum industry[11].
In particular, we look at models that can be written in the general form[7, 10]

∂t(αgρg) + ∂x(αgρgu) =
1

ε
(µ` − µg)(1a)

∂t(α`ρ`) + ∂x(α`ρ`u) = −1

ε
(µ` − µg)(1b)

∂t(ρu) + ∂x(ρu2 + p) = 0(1c)

∂tE + ∂x(u(E + p)) = 0.(1d)
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Herein, αi is the volume fraction of phase i, ρi is the density, and u is the common
velocity. For both phases i, the common pressure p satisfies a state relation

(2) p = p(ρi, ei)

where ei is the specific internal energy. Furthermore, E is the total energy of the
mixture, given by

(3) E = ρgαgeg + ρ`α`e` +
1

2
ρu2,

where

(4) ρ = ρgαg + ρ`α`

is the mixture density. Finally, µi is the chemical potential given by

(5) µi = ei +
p

ρi
− Tsi,

where T is the common temperature and si is the specific entropy of phase i.
In this paper, our focus is on purely mathematical analysis of this model. In

particular, we aim to provide a complete as possible description of how the wave
dynamics depend on the thermodynamic parameters and the strength of the relax-
ation term.

For general hyperbolic relaxation systems, the zero relaxation limit has been
the topic of much study[9, 15, 16]. In the system (1a)–(1d), ε can be seen as a
time-scale of the relaxation process. In the limit ε → ∞, the phase compositions
of the mixture are frozen and the model becomes a hyperbolic conservation law
for the masses, the total momentum and the total energy. In the limit ε → 0, the
relaxation system is formally equivalent to the equilibrium system

µg =µ`(6a)

∂tρ+ ∂x(ρu) = 0,(6b)

∂t(ρu) + ∂x(ρu2 + p) = 0,(6c)

∂tE + ∂x(u(E + p)) = 0,(6d)

where the two mass balance equations are replaced with a single conservation law
for the total mass.

The wave dynamics of the limiting cases for ε is well understood. In their recent
work, Fl̊atten and Lund[7, 10] analyzed how the characteristic velocities of two-
phase relaxation models depend on different assumptions on chemical, thermal and
mechanical equilibrium. They found that for models of the type (1a)–(1d), the
wave speeds of the equilibrium model will always be lower than for the full model.
This is known from the general theory of hyperbolic relaxation systems as the
subcharacteristic condition, which may be derived from entropy considerations[5]
and is closely related to the stability of the relaxation process[22].

However, in a practical application the relaxation parameter ε will take finite
values depending on the rate of mass transfer modeled by e.g. statistical rate
theory[21]. Since the speed of sound in a pipeline can play a crucial role in impor-
tant transient events such as crack propagation and emergency depressurization,
this warrants the study of the wave dynamics in the transitional regime for which
ε takes finite values.
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While hyperbolic relaxation systems have been an active field of research for
decades, the development of a general theory for the wave-dynamics in this tran-
sitional regime has been limited. Recently, some of the present authors studied
the transitional regime of general 2 × 2 relaxation systems[3]. In this case, the
transitional wave speeds were found to fulfill a transitional sub-characteristic con-
dition. Moreover, a critical transition point was found for which the wave dynamics
abruptly change from being similar to the equilibrium system to behaving more like
the frozen system.

The purpose of the present paper is to analyze the transitional wave dynamics
of the 1D phase relaxation model (1a)–(1d), by studying the individual Fourier
components following the approach of Aursand and Fl̊atten[3]. In particular, we
will show how the wave dynamics are fully determined by only two dimensionless
parameters; a stiffness parameter and the ratio of the sound velocities in the limiting
equilibrium and frozen models. We demonstrate that the transitional waves are
stable if and only if the subcharacteristic condition is satisfied.

Also, similarly to the observation made in the similar work[3], a critical transition
region between the equilibrium dynamics and the frozen dynamics will be identified.
In this region, the sonic waves lose their physical meaning and are replaced with an
indeterminate wave moving with the fluid velocity. Mathematically, this interesting
phenomenon corresponds exactly to the casus irreducibilis of the cubic polynomial
whose roots describe the Fourier components.

This paper is organized as follows. In Section 2, we review the theory of plane
wave solutions to linear relaxation systems. In Section 3, we present an explicit
linearization of the two-phase flow relaxation system considered in this paper. In
Section 4, we present the characteristic polynomial whose roots describe the ve-
locities and amplifications of the transitional waves. Herein, we prove that these
solutions satisfy the expected Galilean symmetry under a change of inertial refer-
ence frame.

These roots are analyzed in Section 5. In Sections 5.1–5.2, we verify that we
recover the frozen and equilibrium waves in the stiff and non-stiff limits. In Sec-
tion 5.3, we prove that the transitional waves are stable if and only if the subchar-
acteristic condition is satisfied. In Section 5.4, we prove a principle that carries
the essence of the subcharacteristic condition over to the transitional regime; for
all wave numbers, the maximum wave speed of the relaxation system can never
exceed the maximum wave speed of the frozen (non-stiff) limit of the system. In
Section 5.5, we provide fully general closed-form expressions for the velocities and
amplifications of the transitional waves.

In Section 6, we provide some interpretations and illustrations of these analyt-
ical results. In particular, we emphasize the fact that a critical region of wave
numbers appears if the ratio between the sound velocities in the stiff and non-stiff
limits is sufficiently small. Through this critical region, corresponding to the casus
irreducibilis of the describing cubic polynomial, all waves propagate with the fluid
velocity v and a continuous labeling of the separate waves becomes impossible.
Hence this region can be interpreted as a set of wave numbers where the relaxation
system, in a very qualitative way, changes character from behaving more like the
equilibrium system to acting more like the frozen system.

Finally, in Section 7, the main insights of the paper are summarized.
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2. Linearized relaxation systems

The transitional dynamics can be studied through linear analysis. A hyperbolic
relaxation system such as the phase relaxation model (1a)–(1d) can be written in
the general form[5]

(7) ∂tU + ∂xF (U) =
1

ε
Q(U),

where U = U(x, t) ∈ G ⊆ RN for some state space G.

Now let Û be some constant equilibrium state, characterized by

(8) Q(Û) = 0.

The relaxation system (7) linearized around Û can then be written as

(9) ∂tV + A∂xV =
1

ε
RV ,

where

(10) V = U − Û ,

and the constant matrices

(11) A =
∂F

∂U
and R =

∂Q

∂U

are evaluated at the equilibrium state Û .

Remark 1. Note that this linearization is valid also in the more general case where
ε = ε(U), if it can be assumed that ε is differentiable at equilibrium. Define

(12) ε̂ = ε(Û).

Then it follows from (8) that

(13)
1

ε̂
R =

∂

∂U

(
1

ε
Q(U)

)
= Q(Û)

∂

∂U

(
1

ε

)
+

1

ε̂

∂Q

∂U
=

1

ε̂

∂Q

∂U
.

2.1. Plane-wave solutions. For an initial condition V (x, 0) ∈ L2(R), there exists
a unique solution to (9)[6]. If V (x, 0) ∈ L2(T) with T ⊂ R and T is of length T <∞,
the solution can be written in the general form

(14) V (x, t) =
∑
k

V k(x, t) =
∑
k

exp(H(k)t) exp(ikx)V̂ (k),

where k is the wave number and H is a wave-number dependent matrix given by

(15) H =
1

ε
R− ikA.

We now assume that H is diagonalizable, i. e. it can be written in the form

(16) H = PΛP−1,

where P is its matrix of eigenvectors and Λ the diagonal matrix of eigenvalues. By
using (16), we may then write the general solution (14) in terms of plane waves as

(17) V (x, t) =
∑
k

N∑
j=1

V̄j(k) exp(ikx+ λjt),
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for some amplitudes V̄j(k). Now to each eigenvalue λj of H(k) there is an associated
plane wave with velocity

(18) vj(k) = −1

k
Im(λj)

and amplification factor

(19) fj(k) = Re(λj),

as can be seen by writing (17) as

(20) V (x, t) =
∑
k

N∑
j=1

V̄j(k) exp(fjt) exp (ik(x− vjt)) .

It now follows from (15) that H satisfies the symmetry

(21) H(k) = H(−k).

Hence

(22) λj(k) = λj(−k)

and consequently

fj(k) = fj(−k),(23)

vj(k) = vj(−k).(24)

Hence we may with no loss of generality restrict the analysis of this paper to non-
negative wave numbers, i. e. we assume

(25) k ∈ [0,∞).

3. The phase relaxation system

We now aim to derive an explicit expression for the matrix H corresponding to
the phase relaxation system (1a)–(1d). The Jacobian matrix A for this system is
given by[1, 8, 12]

(26) A =


(1− Y )u −Y u Y 0
−(1− Y )u Y u 1− Y 0
ag − u2 a` − u2 2u− uPε Pε

u
(
ag − E+p

ρ

)
u
(
a` − E+p

ρ

)
E+p
ρ − u

2Pε u (Pε + 1)

 ,
where

(27) Y =
ρgαg

ρ
,

(28) Pε =
ρc̃2

T

ζgCp,g + ζ`Cp,`
Cp,g + Cp,`

and

(29) ai =
ρc̃2

ρi
+

(
1

2
u2 − ei −

p

ρi

)
Pε, i ∈ {g, `}.
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Herein, we have used the thermodynamic parameters[8]:

Cp,i = ρiαicp,i = ρiαiT

(
∂si
∂T

)
p

,(30)

ζi =

(
∂T

∂p

)
si

= − 1

ρ2
i

(
∂ρi
∂si

)
p

.(31)

Furthermore, c̃ is the sound velocity corresponding to the limit ε→∞ in (1a)–(1d),
and is given by[8]:

(32) c̃−2 =
αg

ρgc2g
+

α`
ρ`c2`

+
Cp,gCp,`(ζg − ζ`)2

T (Cp,g + Cp,`)
,

where

(33) c2i =

(
∂p

∂ρi

)
si

are the one-phase sound velocities.

3.1. The relaxation matrix. In this section, we derive the linearized relaxation
matrix R, i. e. the Jacobian of the vector

(34) Q =


µ` − µg

µg − µ`
0
0


evaluated at equilibrium. We start with establishing a useful differential.

Lemma 1. The differential for the chemical potential difference can be written as

(35) d(µg − µ`) =

(
ρc̃2β

ρg
− hgMε

)
d(ρgαg) +

(
ρc̃2β

ρ`
− h`Mε

)
d(ρ`α`) +Mε dε

where

Θ =
ζgCp,g + ζ`Cp,`
Cp,g + Cp,`

,(36)

β =
1

ρg
− 1

ρ`
+ Θ(s` − sg),(37)

Mε = Pεβ +
s` − sg

Cp,g + Cp,`
,(38)

ε = ρgαgeg + ρ`α`e`,(39)

hk = ek +
p

ρk
, k ∈ {g, `}.(40)

Proof. From the Legendre transform on the fundamental differential

(41) dek = T dsk +
p

ρ2
k

dρk

we obtain

(42) d(µg − µ`) =

(
1

ρg
− 1

ρ`

)
dp+ (s` − sg) dT.
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Furthermore, the following relation was derived in Fl̊atten et al.[8]:
(43)

d(ρgαg)

ρg
+

d(ρ`α`)

ρ`
=

(
αg

ρgc2g
+

α`
ρ`c2`

+
ζ2
gCp,g + ζ2

`Cp,`

T

)
dp− ζgCp,g + ζ`Cp,`

T
dT,

and from Morin et al.[12] we have:

(44) dp =

(
ρc̃2

ρg
− Pεhg

)
d(ρgαg) +

(
ρc̃2

ρ`
− Pεh`

)
d(ρ`α`) + Pε dε.

The result now follows from substituting (43) and (44) in (42).
�

This result gives us an explicit formulation of the relaxation matrix.

Proposition 1. In the context of (11), the relaxation matrix R corresponding to
the system (1a)–(1d) is given by

(45) R =


−R1 −R2 −R3 −R4

R1 R2 R3 R4

0 0 0 0
0 0 0 0

 ,
where

R1 =
ρc̃2β

ρg
+

(
1

2
u2 − hg

)
Mε,(46)

R2 =
ρc̃2β

ρ`
+

(
1

2
u2 − h`

)
Mε,(47)

R3 = −uMε,(48)

R4 =Mε.(49)

Proof. With

(50) U =


U1

U2

U3

U4

 =


ρgαg

ρ`α`
ρu
E

 ,
we have the relations

d(ρgαg) = dU1,(51)

d(ρ`α`) = dU2,(52)

dε =
1

2
u2 (dU1 + dU2)− udU3 + dU4.(53)

The result now follows from substituting (51)–(53) into (35).
�

4. The characteristic polynomial

From Proposition 1 and (26), we may now directly construct the wave-number
dependent matrix H as defined by (15). In equilibrium, the chemical potentials
(5) are equal, so we may write

(54) sg − s` =
hg − h`
T

.
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Then a direct calculation of the characteristic polynomial of Hk gives:

λ4 +

(
γc̃2

εĉ2
+ 4iku

)
λ3 +

(
k2c̃2 − 6k2u2 + 3iku

γc̃2

εĉ

)
λ2

+

(
−3

k2u2

ε
γ
c̃2

ĉ2
+
k2

ε
c̃2γ − 4ik3u3 + 2ik3uc̃2

)
λ

+k4u2(u2 − c̃2)− ik
3u3

ε

c̃2

ĉ2
γ + i

k3u

ε
c̃2γ = 0,(55)

where the parameter ĉ corresponds to the mixture sound velocity of the equilibrium
system (6a)–(6b). It is given by[7, 13, 19]

(56) ĉ−2 = ρ

(
αg

ρgc2g
+

α`
ρ`c2`

+ T

(
Cp,g

(
ζg
T

+W

)2

+ Cp,`

(
ζ`
T

+W

)2
))

,

where

(57) W =
1

ρgρ`

ρg − ρ`
hg − h`

.

We have also introduced the shorthand

(58) γ =
(hg − h`)2

T (Cp,g + Cp,`)
.

Note that the sound velocities satisfy the subcharacteristic condition[5, 9]

(59) ĉ ≤ c̃

subject only to fundamental thermodynamic stability constraints[7].

4.1. Galilean invariance. We can demonstrate that the roots of the characteristic
polynomial possess the expected Galilean symmetry, i.e. they are invariant under
a change of inertial reference frame.

By introducing the dimensionless parameters

(60) ϕ = kε
ĉ2

γc̃
, y =

λ

kc̃
, r =

ĉ

c̃
,

we may transform the polynomial (55) to

ϕ
(
y + i

u

c̃

)2 (
y + i

(u
c̃

+ 1
))(

y + i
(u
c̃
− 1
))

+
(
y + i

u

c̃

)(
y + i

(u
c̃

+ r
))(

y + i
(u
c̃
− r
))

= 0.(61)

From (61) it is clear that the change of variables

(62) z = y + i
u

c̃

yields the polynomial

(63) ϕz2(z + i)(z − i) + z(z + ir)(z − ir) = 0,

which is indeed independent of the velocity u.
It is worth noting that the simple polynomial (63) now gives a complete de-

scription of the wave-number dependent velocities and amplifications for a general
relaxation model in the form (1a)–(1d). Remarkably, this dynamics is uniquely
determined only by the parameters ϕ and r as defined by (60). And, as stated by



THE DISPERSIVE WAVE DYNAMICS OF A TWO-PHASE FLOW RELAXATION MODEL 9

Remark 1, the model presented in Section 3 is sufficiently general to represent any
such model where the relaxation term satisfies only two natural properties:

• The mass transfer term disappears in equilibrium where µg = µ`.
• The relaxation parameter ε is differentiable across the equilibrium state.

In the following sections, we will study the transitional wave dynamics in full detail.

5. Transitional wave dynamics

We first consider the wave dynamics in the limiting cases ε → ∞ and ε → 0
respectively, corresponding to the frozen limit of (1a)–(1d) and the equilibrium
limit (6a)–(6b).

5.1. The frozen limit. In the limit of infinite relaxation time, corresponding to
ϕ→∞, the polynomial (63) reduces to

(64) z2(z + i)(z − i) = 0

with the following 4 roots:

• z = 0 with multiplicity 2, corresponding to two waves with velocity u and
zero amplification.

• z = ±i, corresponding to two waves with velocities u± c̃ and zero amplifi-
cation.

This is precisely the wave structure of the frozen model (1a)–(1d)[7, 8]. Herein,
the two waves of velocity u physically represent entropy and mass fraction waves,
whereas the waves of velocity u± c̃ are sonic waves. Note that from (60), there are
three distinct ways this frozen limit can be physically realized:

• the limit of infinite wave number k →∞;
• the limit of infinite relaxation time ε→∞;
• the limit of equal phasic enthalpies giving γ → 0 in (58).

5.2. The stiff limit. In the limit of zero relaxation time, corresponding to ϕ→ 0,
the polynomial (63) reduces to

(65) z(z + ir)(z − ir) = 0.

This has the following 3 roots:

• z = 0, corresponding to a wave with velocity u and zero amplification.
• z = ±ir, corresponding to two waves with velocities u± ĉ and zero ampli-

fication.

Hence we recover the wave structure of the equilibrium model (6a)–(6d)[7, 19].
Herein, the wave of velocity u physically represents an entropy wave, whereas the
waves of velocity u± ĉ are sonic waves. From (60), there are now four distinct ways
this stiff limit can be physically realized:

• the limit of zero wave number k → 0;
• the limit of zero relaxation time ε→ 0;
• the limit of zero temperature giving γ →∞ in (58);
• the limit of zero heat capacities giving γ →∞ in (58).
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5.3. Transitional stability. In this section, we establish a direct connection be-
tween the subcharacteristic condition (59) and the stability of the transitional waves
as described by (63). We first observe that for all ϕ, (63) has a trivial root z = 0
corresponding to the entropy wave. Hence this wave may be fully described as
follows; it will propagate with velocity u, and no amplification, independent of the
wave number and relaxation time.

Eliminating this trivial root from (63), we obtain

(66) ϕz(z2 + 1) + (z2 + r2) = 0.

For the plane wave solutions (14) to be stable, the amplification factors (19) must
be non-positive. This is equivalent to the requirement that the roots zi of (66)
satisfy Re zi ≤ 0.

Proposition 2 (Linear Stability). Let ϕ ∈ (0,∞). The real part of the roots of the
polynomial (66) are nonpositive if and only if the subcharacteristic condition (59)
is satisfied, i.e.

(67) 0 ≤ r ≤ 1.

Proof. This general result follows as a special case of the Routh–Hurwitz theorem.
For the purpose of illustration, we also state below a simple direct proof for the case
where two of the roots are complex conjugate. A direct proof for the remaining
case of distinct real roots may be derived along the same lines.

The polynomial (66) can be written in the form

(68) z3 +
1

ϕ
z2 + z +

r2

ϕ
= (z − z2)(z − z1)(z − z0)

= z3 − (z2 + z1 + z0)z2 + (z2z1 + z1z0 + z0z2)z − z2z1z0 = 0.

We can, without loss of generality, assume z2 is real while z1 and z0 are conjugate
roots (z0z1 = |z0|2). Assume first that the polynomial is stable, i.e. Rezi ≤ 0. We
can then write

(69)
1

ϕ
· 1 = −(z2 + z1 + z0)(z2z1 + z1z0 + z0z2)

=
r2

ϕ
− z2

2(z0 + z1)− |z0|2(z0 + z1)− z2(z0 + z1)2 ≥ r2

ϕ
.

by using (68).
For the converse statement, assume 0 ≤ r ≤ 1. From the positivity of ϕ we have

(70)
r2

ϕ
= −z2z1z0 = −z2|z0|2 ≥ 0,

which directly implies z2 = Rez2 ≤ 0. It remains to show that z0 + z1 ≤ 0. Using
the assumption and (68) we can write, after multiplying by −1,

(71) z0 + z1 + z2 ≤ z2|z0|2.
Furthermore, we have

(72) 1 = z2z1 + z1z0 + z0z2 = |z0|2 + z2(z0 + z1),

so we can then infer

(73) z0 + z1 ≤ z2(|z0|2 − 1) = −z2
2(z0 + z1),

which completes the proof. �
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Proposition 2 shows that for the phase relaxation model the notion of linear
stability and the subcharacteristic condition are in fact equivalent.

5.4. A maximum principle. For general 2× 2 relaxation systems, it was shown
by Aursand and Fl̊atten[3] that the transitional wave velocities always satisfy a
monotonicity principle; the velocities vj(k) are in this case monotonic functions of
the stiffness parameter ϕ.

As will be demonstrated in Section 6, this monotonicity principle does not carry
over to the relaxation model considered in this paper. However, a weaker constraint
on the velocities may be derived.

Proposition 3 (Maximum principle). Let ϕ ∈ (0,∞). Assume that the subcharac-
teristic condition is satisfied, i.e. r2 ≤ 1 in the context of (66). Then the imaginary
parts of the roots in (66) satisfy |Im(z)| ≤ 1.

Proof. Let z = a+ ib, where b = Im(z) and a = Re(z). Then (66) is equal to

ϕ
(
a3 − 3ab2 + a

)
+ a2 − b2 + r2 + i

[
ϕ
(
3a2b− b3 + b

)
+ 2ab

]
= 0.(74)

Both the real and the imaginary part of (74) have to be equal to zero, giving us,
for the imaginary part,

(75) b2 − 1 =
2a

ϕ
+ 3a2.

It follows from Proposition 2 that a ≤ 0 when r2 ≤ 1. If a = 0, then b2 = 1. For
the case a < 0, let us assume that |b| > 1. Then b2 − 1 > 0 and, dividing (75) by
a, we are left with the inequality

(76) a < − 2

3ϕ
,

since a < 0. Multiplying the imaginary part of (74) with a/b and subtracting it
from 3 times the real part, we get

(77) −8ϕab2 + 2ϕa+ a2 − 3b2 + 3r2 = 0.

By subtracting 1/3 times (75) from (77), we then have

(78) a

(
−8ϕb2 + 2ϕ− 2

3ϕ

)
=

8

3
b2 − 3r2 +

1

3
.

With a satisfying (76), we get

(79) − 2

3ϕ

(
−8ϕb2 + 2ϕ− 2

3ϕ

)
<

8

3
b2 − 3r2 +

1

3
,

which results in the inequality

(80) −r2 >
8b2

9
− 5

9
+

4

27ϕ2
.

With |b| > 1 the right hand side in (80) is positive, but the left hand side is negative,
which is a contradiction. Thus |b| ≤ 1.

�
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Physically, this result may be interpreted as a causality principle; the relaxation
terms cannot be used to increase the velocity of information propagation in a stable
system. Note that for our particular two-phase flow relaxation model, Proposition 3
is equivalent to the statement

(81) u− c̃ ≤ vj(k) ≤ u+ c̃ ∀j, k.

5.5. Analytical solutions. Given that (66) is a cubic polynomial, it can be solved
exactly. In this section, we provide explicit expressions for the roots and provide
some interpretations of the results.

The discriminant of (66) is

(82) ∆ = −
(

2

3
(3ϕ2 − 1)

)2

−
(
r2 − 1

9

)
(27ϕ2r2 − 15ϕ2 + 4).

It will now be convenient to introduce the auxiliary variables

s = r2 − 1

9
,(83)

ω = 3ϕ2 − 1,(84)

enabling us to write (82) in the simple form

(85) ∆ = −
(

2

3
ω − 3s

)2

− 9s2ω.

Now the nature of the roots of (66) are determined by the sign of the discriminant
as follows:

D1: ∆ < 0: The equation (66) has one real root and two complex conjugate
roots.

D2: ∆ ≥ 0: The equation (66) has three real roots (casus irreducibilis).

Note that in the context of the transformation (62), a real root corresponds to a
wave of velocity u. Hence the situation D2 (casus irreducibilis) corresponds to a
critical region in wave numbers and relaxation times where the transitional sound
velocities become zero. In fact, as will be described in the following, no continuous
labeling of the waves as “sonic” or “mass fraction” can be made through this critical
region.

5.5.1. Critical region. We now define the critical region C(r) as

(86) C(r) := {ϕ ∈ (0,∞) : ∆(ϕ, r) ≥ 0} .

We may then state the following proposition.

Proposition 4. The equation (66) has three real roots if and only if

(87) ϕ ∈ C(r),

where

(88) C(r) =

{
∅ if r > 1

3 ,

[ϕ−
c , ϕ

+
c ] if r ∈ [0, 1/3].
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Herein, ϕ±
c are given by:

ϕ−
c =

1

2
√

2

√
9(2r2 − 3r4) + 1−

√
(r2 − 1)(9r2 − 1)3,(89)

ϕ+
c =

1

2
√

2

√
9(2r2 − 3r4) + 1 +

√
(r2 − 1)(9r2 − 1)3.(90)

Proof. The discriminant (85) changes sign when the parameter ω satisfies

(91) ωcrit = s

(
9

2
− 81

8
s± 27

8

√
9s2 − 8s

)
,

which corresponds to real-valued ϕ only if r2 ≤ 1/9. In this case, the transformation
(84) gives (89)–(90) which are unconditionally positive. �

We are now in the position to state explicit formulae for the roots inside and
outside of the critical region.

5.5.2. One real and two complex solutions. We now assume that ∆ < 0, i. e. ϕ /∈
C(r). We now define

(92) Q =
1

2

(
8ω − 108sϕ2 + 12ϕ

√
−3∆

)1/3

.

Then the real solution may be written as

(93) z1 =
1

3ϕ

(
Q− ω

Q
− 1

)
,

whereas the complex solutions are given by

(94) z2,3 = − 1

6ϕ

(
Q− ω

Q
+ 2±

√
3i

(
Q+

ω

Q

))
.

5.5.3. Casus irreducibilis. We now consider the case ∆ ≥ 0, i. e. ϕ ∈ C(r). We may
put the polynomial (66) in the reduced form

(95) t3 + pt+ q = 0,

where

t = z +
1

3ϕ
,(96)

p =
3ϕ2 − 1

3ϕ2
=

ω

3ϕ2
,(97)

q =
2− 9ϕ2 + 27r2ϕ2

27ϕ3
=
s

ϕ
− 2ω

27ϕ3
.(98)

Now the roots are given by (k = 0, 1, 2),

(99) tk =
2

3ϕζ
cos

(
1

3
arccos

(
27sϕ2ζ3

2
+ ζ

)
+
π(2k − 1)

3

)
where

(100) ζ =
1√
−ω

.

This yields

(101) zk =
1

3ϕ

(
2

ζ
cos

(
1

3
arccos

(
27sϕ2ζ3

2
+ ζ

)
+
π(2k − 1)

3

)
− 1

)
.
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6. Illustrations and discussion

The analytical expressions derived in the previous section are too intangible to
provide much in terms of direct insights into the structure of the transitional waves.
In this section, we will illuminate this structure through a graphical investigation
of the expressions (93)–(94) and (101).

As the roots are continuous functions of the stiffness parameter ϕ, one would
expect that we should be able to identify sonic waves P± and a mass fraction wave
Y that are continuously transformed between the frozen and stiff limits. In fact,
this näıve assumption breaks down in the critical region; herein, the waves “mix”
and no continuous labeling is possible. Similarly to the critical point found for the
the general 2 × 2 system[3], we may interpret the critical region as a well-defined
“transitional regime” where the system changes character from being equilibrium-
like to behaving more like the frozen system. This interpretation will be made
precise in the following.

6.1. Frozen-like and equilibrium-like waves. For the purposes of the ensuing
discussion, it will be convenient to introduce the following labeling of the waves, as
given by the complex roots of the equation (63).

• Frozen-like sonic waves P±
f , which continuously transform into the frozen

sonic waves as the limit ϕ→∞ is approached.
• Equilibrium-like sonic waves P±

e , which continuously transform into the
equilibrium sonic waves as the limit ϕ→ 0 is approached.
• A frozen-like mass fraction wave Yf , which continuously transforms into the

frozen mass fraction wave as the limit ϕ→∞ is approached.
• An equilibrium-like mass fraction wave Ye, whose amplification factor tends

to −∞ as the limit ϕ → ∞ is approached; i. e. the wave is fully damped
and completely disappears from the system.
• An indeterminate wave X which exists only in the critical region. It cannot

be naturally interpreted as neither a mass fraction nor a sonic wave, but
instead serves to connect the equilibrium-like and frozen-like versions of
these waves.
• An entropy wave S, corresponding to the trivial root z = 0 in (63). The

dispersive dynamics of this wave is independent of ϕ; the velocity of prop-
agation is u and the amplification factor is 0 for all values of ϕ.

We now present the corresponding analytical expressions for each of these waves
in turn, disregarding the trivial entropy wave. We consider first the case r > 1/3,
where there is no critical region C(r).

6.1.1. Smooth transitional dynamics. Consider now the case r > 1/3. In this
case, the transition between the frozen and equilibrium limits is smooth, and the
equilibrium-like and frozen-like waves are identical. We define the following labeling
of the solutions (93)–(94):

• Mass fraction wave:

Im (Yf) = Im (Ye) = 0,(102)

Re (Yf) = Re (Ye) =
1

3ϕ

(
Q− ω

Q
− 1

)
.(103)
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Figure 1. Transitional wave properties. Left: Im(z) (velocities).
Right: Re(z) (amplifications). Top to bottom: r = 1.0, r = 0.5,
r = 0.34, r = 1/3.

• Sonic waves:

Re
(
P±

f

)
= Re

(
P±

e

)
= − 1

6ϕ

(
Q− ω

Q
+ 2

)
,(104)

Im
(
P±

f

)
= Im

(
P±

e

)
= ± 1

2
√

3ϕ

(
Q+

ω

Q

)
.(105)
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The amplifications and velocities of these waves are plotted in Figure 1, for different
values of the parameter r ∈ [1/3, 1]. Herein, the variables are plotted as functions
of a rescaled stiffness parameter χ, given by:

(106) χ(ϕ) =
ϕ

ϕ+ 1
,

in order to limit the plotting domain to [0, 1).
For r = 1/3, a critical phenomenon emerges; at the point

(107) ϕc =

√
1

3
,

all the roots coincide, and the eigenspace of H as given by (15) degenerates. Hence
the assumption (16) leading to the plane wave solutions (17) breaks down at this
point. The solutions corresponding to the sonic velocities abruptly become zero,
meaning that the sound waves in this limit propagate with the fluid velocity in the
Eulerian frame. Also, around this point, the dampening of the sound waves is at
its highest, and the dampening of the mass fraction wave (which disappears in the
equilibrium system) increases sharply. Hence we can justify the statement that ϕc

naturally divides the range of ϕ into an equilibrium-like and frozen-like region.
Decreasing the parameter r further causes this critical point ϕc to expand into a

critical region. In this region, all the roots are distinct and the plane wave solutions
(17) exist - but none of the solutions have a physical interpretation corresponding
to sonic waves. This phenomenon will be investigated in the next section.

6.1.2. Transition through critical region. We consider now the case r ∈ [0, 1/3], i.
e. there exists a critical region and we assume that the subcharacteristic condition
r ≤ 1 is satisfied (as indeed has been proved for our particular model[7]). We define
the following labeling of the solutions (93)–(94) and (101):

• Mass fraction wave:

Im (Yf) = 0 for ϕ ≥ ϕ−
c ,(108)

Im (Ye) = 0 for ϕ ≤ ϕ+
c ,(109)

(110)

Re (Yf) =


1

3ϕ

(
Q− ω

Q − 1
)

for ϕ > ϕ+
c

1
3ϕ

(
2
ζ cos

(
1
3 arccos

(
27sϕ2ζ3

2 + ζ
)
− π

3

)
− 1
)

for ϕ−
c ≤ ϕ ≤ ϕ+

c ,

(111)

Re (Ye) =


1

3ϕ

(
Q− ω

Q − 1
)

for ϕ < ϕ−
c

1
3ϕ

(
2
ζ cos

(
1
3 arccos

(
27sϕ2ζ3

2 + ζ
)

+ π
)
− 1
)

for ϕ−
c ≤ ϕ ≤ ϕ+

c .
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• Sonic waves:

Re
(
P±

f

)
= − 1

6ϕ

(
Q− ω

Q
+ 2

)
for ϕ > ϕ+

c ,(112)

Im
(
P±

f

)
= ± 1

2
√

3ϕ

(
Q+

ω

Q

)
for ϕ > ϕ+

c ,(113)

Re
(
P±

e

)
= − 1

6ϕ

(
Q− ω

Q
+ 2

)
for ϕ < ϕ−

c ,(114)

Im
(
P±

e

)
= ± 1

2
√

3ϕ

(
Q+

ω

Q

)
for ϕ < ϕ−

c .(115)

• Indeterminate wave:

Im (X) = 0 for ϕ ∈ [ϕ−
c , ϕ

+
c ],(116)

Re (X) =
1

3ϕ

(
2

ζ
cos

(
1

3
arccos

(
27sϕ2ζ3

2
+ ζ

)
+
π

3

)
− 1

)
for ϕ ∈ [ϕ−

c , ϕ
+
c ].

(117)

As we will see, this is the natural labeling if we want to assign a continuous physical
interpretation of each wave between the branching points where the roots change
character from being complex to being real.

The amplifications and velocities of these waves are plotted in Figure 2 as func-
tions of χ as given by (106). Note in particular that the frozen-like and equilibrium-
like mass fraction waves Yf and Ye overlap in the critical region; herein, they are
truly separate waves. They are ”backwardly connected” by the indeterminate wave
X, which has no physical interpretation in terms of the waves existing in the frozen
and equilibrium limit systems. Note that the wave X also serves to connect the
frozen-like and equilibrium-like sonic waves.

7. Summary

We have investigated the wave dynamics of a two-phase flow model with relax-
ation towards phase equilibrium. We have shown that for any given thermodynamic
substance, physical state, relaxation rate and chosen wave number k, the veloci-
ties and amplifications of the resulting plane waves are determined by only two
dimensionless numbers (denoted as r and ϕ in our paper).

We have provided a complete description of the wave dynamics in terms of these
two numbers. In particular, we have stated general closed-form expressions for the
corresponding wave velocities and amplifications. Our results hold generally for any
such relaxation model where the relaxation parameter ε is differentiable across the
equilibrium state. This complete description entails the following specific, generally
valid results:

• The wave velocities and amplification factors possess Galilean symmetry;
• The stability criterion for the transitional waves is precisely the classical

subcharacteristic condition;
• The velocities of the transitional waves satisfy a natural maximum princi-

ple, related to causality: The maximum transitional wave speed can never
exceed the maximum frozen wave speed.
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Figure 2. Transitional wave properties. Left: Im(z) (velocities).
Right: Re(z) (amplifications). Top to bottom: r = 1/3, r = 0.15,
r = 0.05, r = 0.

Of particular interest is the emergence of a critical region defining a non-smooth
transition between the equilibrium and frozen limits. This extends the previous
similar observation of Aursand and Fl̊atten[3] for 2× 2 systems.
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