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Abstract. We consider linear hyperbolic systems with a stable rank 1 relax-

ation term. We establish that the characteristic polynomial for the individual

Fourier components of the solution can be written as a convex combination of
the eigenvalue polynomials for the formal stiff and non-stiff limits. This allows

us to provide a direct and elementary proof of the equivalence between linear
stability and the subcharacteristic condition. In a similar vein, a maximum

principle follows: the velocity of each individual Fourier component is bounded

by the minimum and maximum eigenvalues of the non-stiff limit system.

1. Introduction

We are interested in hyperbolic conservation laws with relaxation source terms,
acting to drive the system towards an equilibrium state. Such systems have many
applications in the modeling of natural phenomena [2, 7], in particular they are
useful for describing the interaction between fluid-mechanical and thermodynamical
processes [9, 16, 17].

In one space dimension, hyperbolic relaxation systems can be written in the
general form

(1) ∂tU + ∂xF (U) =
1

ε
Q(U),

to be solved for the vector U(x, t) ∈ G ⊆ RN . Herein, F (U) is the flux vector
and Q(U) is the relaxation term. The parameter ε > 0 determines the rate of
relaxation towards equilibrium. The system is hyperbolic when FU (U) has real
eigenvalues and is diagonalizable and strictly hyperbolic when all the eigenvalues
are real and distinct.

Two limit cases of (1) are of particular interest and will be central to the inves-
tigations of this paper:

• The non-stiff limit, characterized by ε → ∞. In this limit, we may write
(1) as

(2) ∂tU + ∂xF (U) = 0.

We will denote (2) as the homogeneous system.
• The formal equilibrium limit, characterized by Q(U) ≡ 0. This assumption

defines an equilibrium manifold [5] through

(3) M = {U ∈ G : Q(U) = 0}.
Imposing local equilibrium, we may express (1) as

(4) ∂tu + ∂xf(u) = 0,
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for some reduced variable u(x, t) ∈ Rn, where n ≤ N . Herein, every u
uniquely defines an equilibrium state E(u) ∈M .

We will denote (4) as the equilibrium system.

A highly relevant question is whether solutions to (1) converge to solutions to (4)
as ε→ 0. Chen [4] gives an overview of the existing literature where some important
results are included. For the solution of a relaxation system to have a well-behaved
limit, stability of the solution is a necessary criterion. Chen et al. [5] introduce an
entropy condition which ensures dissipativity of the first-order Chapman-Enskog
type expansion. If the full system is endowed with such an entropy, there will also
exist a strictly convex entropy for the equilibrium system, implying that the equi-
librium system will be hyperbolic. Further, under some suitable assumptions, it has
been proved [5, 6] that the solution of the 2×2 relaxation system strongly converges
to that of the equilibrium system. Lattanzio and Marcati [11] prove convergence for
the same system by using a compensated compactness argument. Such arguments
were first developed in this context by Chen and Liu [6]. Yong [22, 23] establishes a
relaxation criterion which is necessary for the convergence of solutions as ε→ 0 in
the non-linear case. For strictly non-linear systems, stronger stability assumptions,
including the existence of a strictly convex entropy, are needed [22]. Lorenz and
Schroll [14] prove equivalence between the relaxation criterion and the convergence
of the solution as ε → 0 in L2 for linear systems with constant coefficients. It is
also possible to show that existence of a strictly convex entropy function is not
needed for linear systems to have a well-behaved limit [15, 22]. Tzavaras [20] builds
a framework for using the zero relaxation limit to approximate hyperbolic systems
of conservation laws when the solutions of the limiting systems are assumed to be
smooth.

1.1. The subcharacteristic condition. A key concept arising in the analysis
of hyperbolic relaxation systems is the subcharacteristic condition [12, 21], first
introduced by Leray and subsequently independently found by Whitham. The
modern terminology was introduced by Liu [13] for 2× 2 systems.

For general N×N hyperbolic systems, the condition may be stated as follows [5].

Definition 1. Let the N eigenvalues of the homogeneous system (2) be given by

(5) λ1 ≤ · · · ≤ λk ≤ λk+1 ≤ · · · ≤ λN ,
i.e. λk are the eigenvalues of

(6) A =
∂F

∂U
.

Let λ̃j be the n eigenvalues of the equilibrium system (4), i.e. λ̃j are the eigenvalues
of

(7) B =
∂f

∂u
.

Herein, the homogeneous system (2) is applied to a local equilibrium state U = E(u),
such that

(8) λk = λk(E(u)), λ̃j = λ̃j(u).

The equilibrium system (4) is said to satisfy the subcharacteristic condition
with respect to (2) when the following statements hold:

(1) all λ̃j are real;
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(2) if the λ̃j are sorted in ascending order as

(9) λ̃1 ≤ · · · ≤ λ̃j ≤ λ̃j+1 ≤ · · · ≤ λ̃n,

then λ̃j are interlaced with λ̃k in the following sense: Each λ̃j lies in the
closed interval [λj , λj+N−m].

Definition 2. Assume that the subcharacteristic condition is satisfied in the sense
of Definition 1. If in addition each λ̃j lies in the open interval (λj , λj+N−m),
then the equilibrium system (4) is said to satisfy the strict subcharacteristic
condition with respect to (2).

Chen et al. [5] proved that for general N × N systems, their entropy condition
implies the subcharacteristic condition. Yong [22] proved that for relaxation sys-
tems satisfying n = N−1, the subcharacteristic condition is necessary for the linear
stability of the equilibrium state; hence it is also necessary for convergence.

For non-linear 2 × 2 systems, it has been well established that stability of the
equilibrium state is equivalent to the strict subcharacteristic condition [5, 23]. In
particular, Chen et al. [5] showed that the strict subcharacteristic condition is
equivalent to their entropy condition in this case.

1.2. Contributions of the current paper. This paper is motivated by the ob-
servation that the modern mathematical literature focuses strongly on nonlinear
analytical techniques, with the aim of obtaining asymptotic behavior and zero re-
laxation limits for nonlinear systems. However, there is also much physical insights
to be gained through simple linear analyses on systems in the form (1). By lineariz-
ing the system and applying a von Neumann type analysis, one obtains dispersion
relations giving the amplifications and velocities of individual Fourier components
as functions of the wave number. Such analyses have been performed on two-phase
flow models by for instance Städtke [19] and Solem et al. [18], and on the St. Venant
equations by Barker et al. [3].

Following in the footsteps of Yong [23], a systematic study of the wave dynamics
of general 2 × 2 systems was undertaken in [1]. Here it was established that the
velocity of any isolated Fourier component will be a monotonic function of the
wave number or the relaxation time. A critical phenomenon was also observed; if
the eigenvalues of the homogeneous system are symmetric around the eigenvalue
of the equilibrium system, a definite branching point in the wave number can be
identified. At this wave number, both velocities and amplification factors are equal
and non-differentiable.

Similar critical phenomena were observed for the two-phase flow model investi-
gated in [18]. In particular, it was observed that if the ratio of the equilibrium and
homogenous sound speeds is less than 1/3, the characteristics of the sound waves
cannot be continously connected between the homogeneous and equilibrium limits
as functions of the wave number or relaxation time; there exist concrete transition
points where the system changes character in a very qualitative manner.

In this paper, we expand on the works [1, 18] by considering general linear N×N
systems with a stable relaxation operator of rank 1, i.e. n = N − 1. For this case,
we prove a useful proposition:

P1: The characteristic polynomial for any isolated Fourier component can be
written as a convex combination of the limiting homogeneous and equilib-
rium eigenvalue polynomials.
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This result, following from elementary linear algebra and consistent with the ob-
servation made in [18], allows for obtaining dispersion relations for any such rank 1
hyperbolic relaxation system directly from the homogeneous and equilibrium eigen-
values; no explicit knowledge of the detailed structure of the relaxation operator
is needed. Hence this proposition provides a tool for significantly simplifying the
kind of von Neumann type analysis as performed in [1, 18, 19].

This proposition also provides an heuristic benefit in describing the fundamen-
tal relationship between stability, causality and the subcharacteristic condition. In
particular, by using basic properties of polynomials established in the modern lit-
erature [8, 24], we are able to provide direct and elementary proofs of the following
expected results:

P2: For strictly hyperbolic systems with a stable rank 1 relaxation term, the
linear stability condition is precisely the subcharacteristic condition.

P3: If the subcharacteristic condition holds for such systems, a maximum prin-
ciple follows: the velocity of any isolated Fourier component is bounded by
the maximum and minimum eigenvalues of the homogeneous system.

These propositions will be precisely formulated in the main part of our paper,
which is organized as follows. In Section 2, we obtain the linearized system around
the equilibrium state. In Section 2.2, we derive the characteristic polynomial for
a Fourier component of wave number k and prove Proposition P1. In Section 3,
we provide an elementary proof of Proposition P2; the equivalence between linear
stability and the subcharacteristic condition. In Section 4, we provide an elementary
proof of Proposition P3, which has the interpretation as a causality principle.

Finally, in Section 5, the results of our paper are summarized.

2. Linearized relaxation systems

Henceforth, we will consider linearized relaxation systems. Let U eq ∈ G be
an equilibrium state, i.e. a constant N -vector characterized by Q(U eq) = 0. The
relaxation system (1) linearized around U eq can then be written as

(10) ∂tV + A ∂xV =
1

ε
RV ,

where V = U −U eq. Herein

(11) A =
∂F (U)

∂U

∣∣∣∣
Ueq

and R =
∂Q(U)

∂U

∣∣∣∣
Ueq

are both N ×N matrices with constant coefficients.

2.1. Plane-wave solutions. For the purpose of the present analysis, we write the
solution to the linearized problem (10) in terms of its Fourier components. Following
the approach of Yong [22, 23], we assume initial data V (x, 0) ∈ L2([a, b]), where
[a, b] ⊂ R is some interval, and write the unique solution to the linear initial value
problem as

(12) V (x, t) =
∑
k

V k(x, t) =
∑
k

exp(H(k)t) exp(ikx)V̂ (k)

where

(13) H(k) =
1

ε
R− ikA.
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Furthermore, we can write H = PJP−1, where P is the matrix of generalized
eigenvectors and J is the corresponding Jordan matrix. Now let λj denote the
eigenvalues of H. The solution (12) can then be written as a combination of
elementary waves as

(14) V (x, t) =
∑
k

N∑
j=1

Ṽj(k, t) exp (ikx+ λjt) ,

for some amplitudes Ṽj(k, t), which depend on k and are polynomials in t. Notice
that there is a plane wave solution associated with each distinct eigenvalue. In
particular, if H is diagonalizable, J reduces to the diagonal matrix consisting of
the eigenvalues of H, and Ṽj(k, t) = Ṽj(k) for all j.

Considering (14), it is natural to introduce the dispersion relation

(15) vj(k) = −1

k
Im(λj)

and the dampening

(16) fj(k) = Re(λj)

in order to further re-write the solution as

(17) V (x, t) =
∑
k

N∑
j=1

Ṽj(k, t) exp(fj(k)) exp (ik(x− vj(k)t)) .

This allows us to describe the full wave dynamics of the linear relaxation system
(10) in terms of the eigenvalues of the matrix H. Note also that since we have the
symmetry

(18) H(k) = H(−k),

we can study the system for wave numbers k ∈ [0,∞) without loss of generality.

2.1.1. Stability. We say that the relaxation system (1) is linearly stable if the solu-
tions (12) to its linearization (10) around the equilibrium state U eq are bounded
in L2 for all t ∈ [0,∞). This is equivalent to the condition

(19) |exp(H(k)t)| ≤ C ∀k ∈ R,

where C is some positive constant and | · | denotes the L2 norm for matrices. By
making the variable transformations

(20) η =
t

ε
, ξ = −kt

we may state the stability condition (19) in the following form:

Definition 3. Consider the relaxation system (1) linearized as (10) around the
state U eq. Assume that there is a C > 0 such that

(21) |exp (ηR+ iξA)| ≤ C
for all η ≥ 0 and ξ ∈ R.

Then the equilibrium state U eq is said to be linearly stable.

This is precisely the stability criterion identified by Yong [22], as part of his
stronger relaxation criterion.

We may now state the following Lemma [10].
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Lemma 1. Linear stability in the sense of Definition 3 is equivalent to the following
statements being valid for all k:

• All eigenvalues λj of the matrix H(k) have a real part Re(λj) ≤ 0.

• If Jr is a Jordan block of the Jordan matrix J = P−1HP which corresponds
to an eigenvalue λj with Re(λj) = 0, then Jr has dimension 1× 1.

Proof. The proof is straightforward and can be found in [10]. �

We also define the stronger notion of strict stability:

Definition 4. Assume that the equilibrium state U eq is linearly stable in the sense
of Definition 3. If in addition all eigenvalues of the matrix H(k) have a real part
Re(λj) < 0 for all k, then the equilibrium state U eq is said to be strictly linearly
stable.

2.2. The characteristic polynomial. We assume that the relaxation matrix R
is stable, i.e. it has no eigenvalues with positive real parts. For the general linear
N ×N system with rank 1 relaxation the matrix H can then, up to a scaling and
a similarity transform, be written as

(22) H =
1

ε
R− ikA =

1

ε

 0 . . . 0
...

...
rN,1 . . . −1

− ik
a1,1 . . . a1,N

...
...

aN,1 . . . aN,N

 .

A crucial property of the characteristic polynomial of (22) is that it can be written
as a convex sum of the polynomials of the homogeneous and equilibrium systems.
To obtain this result, we first need to establish the following lemma:

Lemma 2. Assume that the relaxation matrix is stable. In the context of (22), the
characteristic polynomials for the homogeneous system and the equilibrium system
are given by

(23) Ph(z) = det(−iA− zI)

and

(24) Pe(z) = −det(−iCDT − iAN,N − zI),

respectively. In the above,

Hh = −ikA
He = −ikB,
z = λ/k

and the vectors D, C are given by

(25) D =

 rN,1

...
rN,N−1



(26) C =

 a1,N

...
aN−1,N


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and

(27) AN,N =

 a1,1 . . . a1,N−1

...
...

aN−1,1 . . . aN−1,N−1

 .

Proof. It is easily seen that (23) is the characteristic polynomial for the homoge-
neous system. To see that the characteristic polynomial for the equilibrium system
satisfies (24), we look at solutions V satisfying RV = 0. With R as in (22) and

V = [V1, V2, . . . , VN ]
T

, we have

N−1∑
k=1

rNkVk − VN = 0,(28)

such that the equilibrium system with v = [V1, . . . , VN−1] is equal to

∂tv +

 a11 · · · a1,N−1

...
...

aN−1,1 · · · aN−1,N−1

+

 a1,N

...
aN−1,N

(rN,1 · · · rN,N−1

)
∂xv = 0

(29)

Thus, the equilibrium system has the characteristic equation det(−iB − zI) = 0,
with

B = CDT + AN,N .(30)

�

We can now establish the following:

Proposition 1. Assume that the relaxation matrix is stable. Let

(31) χ =
ϕ

ϕ+ 1

with ϕ = kε. The characteristic polynomial for (22) can be written in the form

(32) Ψ(z) = χPh(z) + (1− χ)Pe(z) = 0, χ ∈ [0, 1],

where Ph(z) and Pe(z) are given by (23) and (24), respectively.

Proof. We have

H − λI =
1

ε
R− ikA− λI =

 −ika11 − λ · · · −ika1N

...
...

rN1

ε − ikaN1 · · · −1
ε − ikaNN − λ

 .(33)

Multiplying the characteristic equation of H with kn, we get

det

(
1

ϕ
R− iA− zI

)
= det

 −ia11 − z · · · −ia1N

...
...

rN1

ϕ − iaN1 · · · −1
ϕ − iaNN − z

 = 0,(34)
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where ϕ = kε and z = λ/k. Introducing An,k as the sub-matrix of −iA−zI where
the nth row and the kth column is removed, we have the characteristic equation in
the following form,

Ψ̃(z) =

N−1∑
k=1

(−1)k−1rNk · det(AN,k)− det(AN,N ) + ϕ · det(−iA− zI) = 0(35)

when expanding along the bottom row of (34). By (23), we may write (35) as

(36) Ψ̃(z) = P̃e(z) + ϕPh(z),

where

(37) P̃e(z) =

N−1∑
k=1

(−1)k−1rNk · det(AN,k)− det(AN,N ).

We can now observe that (37) is equal to the characteristic polynomial for the
equilibrium system (24) by the following calculation,

P̃e(z) =det


−ia11 − z · · · −ia1,N−1 −ia1N

...
. . .

...
−iaN−1,1 · · · −iaN−1,N−1 − z −iaN−1,N

rN,1 · · · rN,N−1 −1


(38)

=det


−ia11 − ia1NrN,1 − z · · · −ia1,N−1 − ia1NrN,N−1 0

...
. . .

...
−iaN−1,1 − iaN−1,nrN,1 · · · −iaN−1,N−1 − iaN−1,NrN,N−1 − z 0

0 · · · 0 −1


=− det(−iB − zI) = Pe(z),

where we have first added −iajN multiplied with the last row to the jth row of
(38) and then added rN,i multiplied with the last column to the jth column for
j = 1, . . . , N − 1. Substituting (31) into (36) we obtain

(39) Ψ(z) = (1− χ)Ψ̃(z) = χPh(z) + (1− χ)Pe(z).

�

3. Linear stability

In this section we prove that strictly hyperbolic relaxation systems with stable
rank 1 relaxation matrices are linearly stable if and only if the roots of the two
limiting polynomials interlace on the imaginary axis, i.e. if and only if the relaxation
system satisfies the subcharacteristic condition of Definition 1.

Let

Ψ(z) = χPh(z) + (1− χ)Pe(z)(40)

be the eigenvalue polynomial for the N × N linear hyperbolic relaxation system
(10) where R is of rank one and stable. Further, let Ph(z) and Pe(z) be as in
Lemma 2. Since A is a N ×N real matrix and B a (N − 1)× (N − 1) real matrix,
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the coefficients of Ph(z) and Pe(z) alternate between being purely real and purely
imaginary in the following way:

Ph(z) =zN + ibN−1z
N−1 + bN−2z

N−2 + . . .(41)

Pe(z) =zN−1 + icN−2z
N−2 + cN−3z

N−3 + . . . ,(42)

such that the full polynomial (40) satisfies

Ψ(z) =χPh(z) + (1− χ)Pe(z)

=χ(zN + ibN−1z
N−1 + bN−2z

N−2 + . . . )(43)

+ (1− χ)(zN−1 + icN−2z
N−2 + cN−3z

N−3 + . . . ).

By rewriting the polynomial in this form, we are able to prove the following propo-
sition.

Proposition 2. Assume that R is a stable rank 1 relaxation matrix for the lin-
earized relaxation system (10) Let Ψ(z) in (40) be its characteristic polynomial.
Further, assume that the system is strictly hyperbolic. Then the system (1) is lin-
early stable for all χ ∈ [0, 1] if and only if the roots of Pe(z) are purely imaginary
and interlace the roots of Ph(z) on the imaginary axis, i.e. the subcharacteristic
condition is satisfied.

Further, the subcharacteristic condition is strictly satisfied if and only if the
system is strictly linearly stable for all χ ∈ (0, 1).

Before we prove Proposition 2 for relaxation systems, let us take a look at a
general complex polynomial

P (z) =

N∑
k=0

(ak + ibk)zk, aN + ibN 6= 0.(44)

This polynomial can be rewritten as P (z) = m(z) + p(z), where m(z) and p(z) are
the two axially complementary polynomials

m(z) =
1

2

[
P (z) + P (−z)

]
(45)

p(z) =
1

2

[
P (z)− P (−z)

]
.(46)

Let us assume that m(z) and p(z) have no roots in common. The order of m(z) is
one more than the order of p(z) if N is even and the opposite if N is odd. Further,
observe that the inequality

aNaN−1 + bNbN−1 > 0(47)

is necessary for (44) to be stable, as the coefficient for zn−1 is equal to minus the
sum of all the roots and that the real part of the sum of the roots have to be less
than zero. The following stability lemma exists for general polynomials [24].

Lemma 3. Assume that (47) holds and that m(z) and p(z) have no roots in com-
mon. Then the general complex polynomial (44) is strictly stable, i. e. Re(λ) < 0
for all roots λ, if and only if m(z) and p(z) have distinct purely imaginary roots
that interlace on the imaginary axis.

Proof. The proof is presented in Zhareddine [24]. �

Now we are ready to prove Proposition 2.
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Proof. We assume that all roots Ph(z) and Pe(z) have in common have been fac-
tored out such that we are left with the reduced polynomial Ψr(z). All the roots
that Pe,r and Ph,r have in common satisfy Re(λ) = 0. Since the system is assumed
to be strictly hyperbolic, all the roots that Pe(z) and Ph(z) have in common are
distinct. Thus, the Jordan blocks corresponding to these eigenvalues will have di-
mension 1×1 and, according to Lemma 1, they will not cause any linear instability
in the sense of Definition 3.

We now split the remaining polynomial Ψr(z) into two axially complementary
polynomials as in (45),

m(z) =
1

2

[
Ψr(z) + Ψr(−z)

]
(48)

p(z) =
1

2

[
Ψr(z)−Ψr(−z)

]
.(49)

We observe that m(z) = χPh,r(z) and p(z) = (1 − χ)Pe,r(z) if N is even and
p(z) = χPh,r(z) and m(z) = (1 − χ)Pe,r(z) if N is odd, making Ph(z) and Pe(z)
axially complementary. We easily see that for χ = 1 we have the homogeneous
eigenvalue polynomial and for χ = 0 we have the equilibrium eigenvalue polynomial.

From now on, we look at χ ∈ (0, 1). Corresponding to the coefficients for the
general polynomial (44), Ψr(z) has

aN = χ, bN = 0, aN−1 = (1− χ),(50)

such that (47) always is fulfilled. It now follows from Lemma 3 that the roots {zj}
of Ψr(z) satisfy Re(zj) < 0 if and only if the roots of Ph,r(z) interlace the roots of
Pe,r and their roots are distinct and purely imaginary.

If Pe(z) and Ph(z) have no roots in common, we have Re(zj) < 0 for all roots of
Ψ(z) when χ ∈ (0, 1), making the system strictly linearly stable.

If all roots of Pe(z) are roots of Ph(z), the remaining eigenvalue polynomial will
have one root, Ψr(z) = ϕ(z − zk) + (ϕ− 1), where zk is a root of Ph(z). This root
is always stable as ϕ ≤ 1. �

With Proposition 2, we have now shown that there is an equivalence between
linear stability and the subcharacteristic condition for hyperbolic relaxation sys-
tems with stable rank one relaxation matrices. We can further observe that linear
stability implies that the linear equilibrium system must be strictly hyperbolic.

4. A maximum principle

We show that the velocities of the linearized hyperbolic relaxation system 10
can never exceed the velocities of the corresponding homogeneous system when
the system is linearly stable. We prove this with the help of some properties for
polynomials found in Fisk [8].

Let (40) be the eigenvalue polynomial for the strictly hyperbolic N×N linearized
relaxation system with a relaxation matrix of rank 1. Assume that the system is
linearly stable. Let Ψr(z) be the reduced polynomial where all the roots that Pe(z)
and Ph(z) have in common are factored out. Then, by Proposition 2, the roots
of Ph,r(z) strictly interlace the roots of Pe,r(z) on the imaginary axis. We make a
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translation of the roots from the left half plane to the lower half plane,

Ψ̂r(z) = iNΨr(−iz)
= iNχPh,r(−iz) + iN (1− χ)Pe,r(−iz)(51)

= h(z) + ig(z)

The roots of h(z) and g(z) in (51) interlace on the real axis. Further, the real
roots of h(z) and g(z) correspond to the roots of Ph,r(z) and Pe,r(z) on the imag-
inary axis. Since the roots {λ1, λ2, . . . , λn} of h(z) strictly interlace the roots
{α1, α2, . . . , αn−1} of g(z), g(z) changes sign on the roots of h(z).
h(z) is of order N and of one order more than g(z). The homogeneous system

is assumed to be strictly hyperbolic, making the roots of h(z) distinct such that

h(z)

z − λ1
,

h(z)

z − λ2
, . . . ,

h(z)

z − λN
(52)

is a basis for all real polynomials with real roots of order N − 1. We can therefore
express g(z) with basis

g(z) =

N∑
k=1

ck
h(z)

z − λk
.(53)

The cks have the same sign if the eigenvalue polynomial (40) is strictly stable. For
a root λk of h(z), we have

g(λk) = ck(λk − λ1) . . . (λk − λk−1)(λk − λk+1) . . . (λk − λN ),(54)

such that

sgn(g(λk)) = sgn(ck)(−1)k+N(55)

and we can see that g(z) changes sign on the roots of h(z) if all the cks have the
same sign. The cks also have to be strictly greater than zero. If not, λk would
also be a root of g(z), which contradicts the fact that h(z) and g(z) have no roots
in common. Pe in (40) has a positive leading coefficient which makes all the cks
positive.

We can now prove the following proposition.

Proposition 3. Let (10) be a strictly hyperbolic relaxation system with a stable
rank 1 relaxation matrix. Let the system be stable. Then the imaginary parts of the
roots, Im(zk), for k = 1, . . . , N , of (40) satisfies

min
i
{λi)} ≤ Im(zk) ≤ max

i
{λi}(56)

where iλk are the roots of Ph(z), for all χ ∈ [0, 1].

Proof. When the system is stable, the reduced polynomial of (40) is strictly stable
for all χ ∈ (0, 1), the roots of χPh,r(z) strictly interlace the roots of (1− χ)Pe,r(z)
on the imaginary axis. We look at the translated polynomial in (51). We can write
(51) as

Ψ̂r(z) = h(z) + i

N∑
k=1

ck
h(z)

z − λk
.(57)
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For a root zi of (51), we will have

0 = 1 + i

N∑
k=1

ck
1

zi − λk
.(58)

Assume that zi is a root of Ψ̂r(z) with Re(zi) > λk for all k = 1, . . . , N . All the
cks are greater than zero, making the real part of the sum in (58) greater than
zero, such that the right hand side cannot be equal to zero. Therefore, there are
no roots zi of (40) with real part greater than all the roots of h(z). The proof for
Re(zi) < λk is similar.

We conclude that (51) has no roots with real part greater than or smaller than
the real roots of h(z). Translating (51) back to (40), we observe that the real part
of the roots in (51) correspond to the imaginary parts of the roots in (40).

The roots that Pe(z) and Ph(z) have in common are constant for any χ ∈ [0, 1]
and will never be able to exceed any maximum or minimum value. �

Remark 1. The converse direction of Proposition 3 does not hold. We can easily
generate two polynomials P1(z) and P2(z) satisfying the maximum principle that
do not interlace, making the convex combination unstable,

P1(z) = (z + i5)(z + i)(z − i2)(59)

P2(z) = (z + i4)(z + i2).(60)

5. Summary

We have provided some fundamental and elementary results pertaining to the
von Neumann type analysis of linearized hyperbolic relaxation systems where the
relaxation operator is assumed to be stable and of rank 1. Our results may be
briefly summarized as follows:

P1: The characteristic polynomial for any Fourier component of wave number
k may be directly obtained as a convex combination of the eigenvalue poly-
nomials for the homogeneous and equilibrium limits.

P2: A strictly hyperbolic relaxation system with a stable rank 1 relaxation
operator is linearly stable if and only if the subcharacteristic condition is
satisfied.

P3: If the subcharacteristic condition is satisfied, the velocity of any isolated
Fourier component is bounded by the maximum and minimum eigenvalue
of the homogeneous system.

Herein, it should be noted that the proof of P1 is obtained from elementary lin-
ear algebra and the statements of P2 and P3 are unsurprising given the already
established strong relationship between stability and the subcharacteristic condi-
tion [5, 23]. In our opinion, the main interest of our paper lies in the connection
provided between theory describing general properties of roots of polynomials and
fundamental causality and stability properties of hyperbolic relaxation systems.
These connections seem so far to have been given little emphasis in the literature.
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