LOCAL DISCONTINUOUS GALERKIN SCHEMES FOR
A NONLINEAR VARIATIONAL WAVE EQUATION
MODELING LIQUID CRYSTALS
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ABSTRACT. We consider a nonlinear variational wave equation that models the dynamics of ne-
matic liquid crystals. Discontinuous Galerkin schemes that either conserve or dissipate a discrete
version of the energy associated with these equations are designed. Numerical experiments illus-
trating the stability and efficiency of the schemes are presented. An interesting feature of these
schemes is their ability to approximate two distinct weak solutions of the underlying system.

1. INTRODUCTION

1.1. The model. The dynamics of liquid crystals is of utmost significance to the makers of visual
displays such as LCDs. Liquid crystals are mesophases, i.e. intermediate states of matter between
the liquid and the crystal phase. They exhibit characteristics of fluid flow and have optical
properties typically associated with crystals. One of the most common phases in liquid crystals
is the nematic phase. Nematic liquid crystals consist of strongly elongated molecules that can be
considered invariant under rotation by an angle of 7. The flow of a liquid crystal is commonly
described by two linearly independent vector fields; one describing the fluid flow and one describing
the orientation of the so-called director field that gives the orientation of the rod-like molecule. In
this paper we will only consider stationary flow, and hence focus exclusively on the dynamics of
the director field

n=n(x,t) € §%

Given a director field n, the well known Oseen-Frank free-energy density W associated with
this field is given by

(1.1) W(n,Vn)=anx (Vxn)?+8(V-n)’++vm-(Vxn))’.

The positive constants «, § and v are elastic constants of the liquid crystal. Note that each term
on the right hand side of (1.1) arises from different types of distortions. In particular, the term
a|n x (V x n)|? corresponds to the bending of the medium, the term 8 (V - n)® corresponds to
splay, and the term v (n - (V X n))2 corresponds to the twisting of the medium.

For the special case of & = 8 =+, the free-energy density (1.1) reduces to

W (n,Vn) = a|Vn)?,

which corresponds to the potential energy density used in harmonic maps into the sphere S2. The
constrained elliptic system of equations for n, derived from the potential (1.1) using a variational
principle, and the parabolic flow associated with it, are widely studied, see [6, 11, 13] and references
therein.

In the regime where inertial effects are dominating over viscosity, it is natural to model the
propagation of orientation waves in the director field by employing the principle of least action
[26], i.e.

(1.2) 6% // (n} — W(n, Vn)) dxdt =0, n-n=1
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Again, in the special case of & = 8 = ~, this variational principle (1.2) yields the equation for
harmonic wave maps from (14 3)-dimensional Minkowski space into the two sphere, see [9, 27, 28]
and references therein.

In this paper, we will restrict ourselves to one-dimensional planar waves; the director field n is
given by

n(z,t) = cos(z,t)e, +siny(z, t)ey,

where e, and e, are the coordinate vectors in the x and y directions, respectively. That is to say
the dynamics of the liquid crystal is described by some unknown function v, which represents the

angle of the director field relative to the a-direction. In this case, the variational principle (1.2)
reduces to [26, 21, 16]

Ve — () (c(P)¥a), =0, (z,t) € Ilr,
(13) ¢($70) = ¢0($)7 T e Ra

¢t($,0):¢1($)7 ZL‘G]R,
where Il = R x [0, 7] with fixed T > 0 , and the wave speed ¢(¢) given by
(1.4) (1) = acos®1p 4 Bsin? .

The form (1.3) is the standard form of the nonlinear variational wave equation considered in the
literature.
For the one-dimensional planar waves the energy is given by

(1.5 &0 = [ (0 +Ew)2) do
A simple calculation shows that smooth solutions of the variational wave equation (1.3) satisfy
dé(t)
1.6 —— =0.
(1.6) i

1.2. Mathematical difficulties. Despite its apparent simplicity, the mathematical analysis of
(1.3) is complicated. Independently of the smoothness of the initial data, due to the nonlinear
nature of the equation, singularities may form in the solution v,. Therefore, we consider solutions
in the weak sense:

Definition 1.1. Set IIr =R x (0,7T). A function
Y(t,x) € L ([0, T]; WHP(R)) N C(Ir), ¢ € L ([0, T]; L*(R)),

for all p € [1,3 + ¢q], where q is some positive constant, is a weak solution of the initial value
problem (1.3) if it satisfies:
D.1 For all test functions ¢ € D(R x [0,T))

(L.7) / /H (rpr — W) — () (V) (42)20) dadt = 0.

D.2 (-,t) = ug in C ([0,T]; L*(R)) as t — 0.
D.3 (-,t) — vo as a distribution in Iy when t — 07,

An important aspect of the variational wave equation is that there exist both conservative and
dissipative weak solutions, see e.g. [30] for a more detailed discussion. To illustrate this difference,
one can consider initial data for which the solution vanishes identically at some specific (finite)
time. At this point, at least two possibilities exist: to continue with the trivial zero solution, termed
as the dissipative solution. Alternatively, one can show that there exists a nontrivial solution that
appears as a natural continuation of the solution prior to the critical time. This solution is denoted
the conservative solution as it preserves the total energy (1.5) of the system. This dichotomy
makes the question of well-posedness of the initial value problem (1.3) very difficult. Additional
admissibility conditions are needed to select a physically relevant solution. The specification of
such admissibility criteria is still open.
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Although the problem of global existence and uniqueness of solutions to the Cauchy problem
of the nonlinear variational wave equation (1.3) is still open, several recent papers have explored
related questions or particular cases of (1.3). It has been demonstrated in [17] that (1.3) is rich in
structural phenomena associated with weak solutions. In fact, by rewriting the highest derivatives
of (1.3) in conservative form

b = (P(W)), = —c()c ()7,

we see that the strong precompactness in L? of the derivatives {1, } of a sequence of approximate
solutions is essential in establishing the existence of a global weak solution. However, the equation
shows the phenomenon of persistence of oscillations [12] and annihilation in which a sequence
of exact solutions with bounded energy can oscillate forever so that the sequence {t,} is not
precompact in L2. Still, the weak limit of the sequence is a weak solution.

There has been a number of papers concerning the existence of weak solutions of the Cauchy
problem (1.3), starting with the papers by Zhang and Zheng [30, 31, 32, 33, 34, 35], Bressan and
Zheng [7] and Holden and Raynaud [19]. In [34], the authors show existence of a global weak
solution using the method of Young measures for initial data 1o € H'(R) and ¢; € L?(R). The
function ¢(v) is assumed to be smooth, bounded, positive with derivative that is non-negative and
strictly positive on the initial data ¢y. This means that the analysis in [30, 31, 32, 33, 34, 35] does
not directly apply to (1.3) when using the physical wave speed (1.4).

A different approach to the study of (1.3) was taken by Bressan and Zheng [7]. Here, they
rewrote the equation in new variables such that the singularities disappeared. They show that for
g absolutely continuous with (¢9)z, 11 € L*(R), the Cauchy problem (1.3) allows a global weak
solution with the following properties: the solution %) is locally Lipschitz continuous and the map
t — u(t,-) is continuously differentiable with values in LY (R) for 1 <p < 2.

In [19], Holden and Raynaud prove the existence of a global semigroup for conservative solutions
of (1.3), allowing for concentration of energy density on sets of zero measure. Furthermore they
also allow for initial data tg,1; that contain measures. The proof involves constructing the
solution by introducing new variables related to the characteristics, leading to a characterization
of singularities in the energy density. They also prove that energy can only focus on a set of times
of zero measure or at points where ¢’(¢)) vanishes.

1.3. Numerical Schemes. There are no elementary and explicit solutions available for (1.3),
except for the trivial case where ¢ is constant. Consequently, robust numerical schemes for ap-
proximating the variational wave equation are very important in the study of nematic liquid
crystals. However, there is a paucity of efficient numerical schemes for these equations. Also,
traditional finite difference schemes will not yield conservative solutions, but rather dissipative
solutions due to the intrinsic numerical diffusion in these methods.

Within the existing literature we can refer to [16], where the authors present some numerical
examples to illustrate their theory. In recent years, a semi-discrete finite difference scheme for
approximating one-dimensional equation (1.3) was considered in [20]. The authors were even able
to prove convergence of the numerical approximation, generated by their scheme, to the dissipa-
tive solution of (1.3). However, the underlying assumptions on the wave speed ¢ (positivity of
the derivative of ¢) precludes consideration of realistic wave speeds given by (1.4). Another recent
paper dealing with numerical approximation of (1.3) is [19]. Here, the authors use their analyt-
ical construction to define a numerical method that can approximate the conservative solution.
However, the method is computationally very expensive as there is no time marching. Another
recent paper [22] deals with first order finite different schemes based on either the conservation or
the dissipation of the energy associated with (1.3). In the one-dimensional case, they rewrote the
variational wave equation (1.3) in the form of two equivalent first-order systems. Energy conser-
vative as well as energy dissipative schemes approximating both these formulations were derived.
Moreover, they also designed an energy conservative scheme based on a Hamiltonian formulation
of the variational wave equation.

Furthermore, there are some works on the Ericksen—Leslie (EL) equations [1], a simple set of
equations describing the motion of a nematic liquid crystal. In [5], authors have presented a finite
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element scheme for the EL equations. Their approximations are based on the ideas given in [3]
which utilize the Galerkin method with Lagrange finite elements of order 1. Convergence, even
convergence to measure-valued solutions, of such schemes is an open problem. In [2], a saddle-point
formulation was used to construct finite element approximate solutions to the EL equations.

A penalty method based on well-known penalty formulation for EL equations has been in-
troduced in [23] which uses the Ginzburg—Landau function. Convergence of such approximate
solutions, based on an energy method and a compactness result, towards measure valued solutions
has been proved in [24].

1.4. Scope and outline of the paper. In view of the above discussion, there seem to exist
no robust and efficient high-order numerical schemes currently available for solving the nonlinear
variational wave equation (1.3). Furthermore, one can expect conservative as well as dissipative
solutions of the variational wave equation (1.3) after singularity formation. Hence, there is a need
for higher-order schemes (energy conservative and energy dissipative) that approximate these dif-
ferent types of solutions. Typically, energy conservative schemes produce oscillations at shocks.
This is expected as energy needs to be dissipated at shocks. A suitable numerical diffusion oper-
ator added to energy conservative scheme results in a energy stable scheme. To the best of our
knowledge, this is the first attempt to construct high-order conservative and dissipative schemes
for (1.3).

We will require our numerical methods to be shock capturing, exhibit high-order accuracy
and low numerical dissipation away from shocks. Shock capturing Runge-Kutta Discontinuous
Galerkin methods are high-order accurate away from discontinuities, thus they are a candidate
method for carrying out such simulations. Discontinuous Galerkin (DG) methods were first in-
troduced by Hill and Reed [18] for the neutron transport equations (linear hyperbolic equations).
These methods were then generalized for systems of hyperbolic conservation laws by Cockburn
and co-workers [10] and references therein. In space the solution is approximated using piecewise
polynomials on each element. Exact or approximate Riemann solvers from finite volume methods
are used to compute the numerical fluxes between elements. Limiters or shock capturing operators
are used to achieve non-oscillatory approximate solutions, if they contain shocks [8]. For these
reasons, DG methods can be seen as generalization of finite volume methods to higher order.

Given this background, we present a class of schemes in this paper that has following properties:

(1) All the schemes are (formally) high-order accurate.

(2) All the designed schemes resolved the solution (including possible singularities in the angle
¥) in a stable manner.

(3) The energy conservative schemes converge to a limit solution (as the mesh is refined),
whose energy is preserved. This solution is a conservative solution of (1.3).

(4) The energy dissipative schemes also converge to a limit solution with energy being dissi-
pated with time. This solution is a dissipative solution of the variational wave equation.

The rest of the paper is organized as follows: In Section 2, we present energy conservative
and energy dissipative schemes for the one-dimensional equation (1.3). Details of implementation
presented in Section 3 and finally numerical experiments illustrating all these designed schemes
are presented in Section 4.

2. NUMERICAL SCHEMES FOR THE VARIATIONAL WAVE EQUATION

2.1. The grid and notation. We begin by introducing some notation needed to define the DG
schemes. Let the domain 2 C R be decomposed as 2 = U;Q; where Q; = [xj_l/g,:nj+1/2] for
j = 1, ce 7J\[. We denote ALZ?J = l‘j+1/2 - xj—l/Q and T; = (Sﬁj_l/Q + $j+1/2)/2.

Let u be a grid function and denote uj++1 /2 88 the function evaluated at the right side of the

denote the value at the left side. We can then introduce the

cell interface at x4,/ and let Uit

jump, and respectively, the average of any grid function u across the interface as

+ —
Ujpr72 T Ui

Ujy1/2 = 5 )
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ot -
[uljy1/2 = ui12 = i e
Now let v be another grid function. The following identity is readily verified:
(2.1) [[“U]]jﬂ/z = Tjt1/2[v]j41/2 + [[U]]j+1/25j+1/2

2.2. A first-order system of Riemann invariants. It is easy to check that the variational wave
equation (1.3) can be rewritten as a first-order system by introducing the Riemann invariants:

R:=1 + ()
S:= /wt - 0(1/’)%:

For smooth solutions, equation (1.3) is equivalent to the following system in non-conservative form
for (R, S,v):

Ry — c(¥) Ry = 535 (R? - 5?)
(2.2) Sy + c(1h)S, = — <) (R? — 52)

dc(¥)
Yr =57
Observe that one can also rewrite the equation (1.3) in conservative form for (R, S, 1)) as

R; — (c($)R), = — =W (R~ 5),

(23) Se+ (c()S), =~ (R ),

7/) _ R+S

t PR
The corresponding energy associated with the system (2.2) is
1
(2.4) Et) = 5/ (R* + S?) du.
R

A simple calculation shows that smooth solutions of (2.2) satisfy the energy identity:
(2.5) (R*+5%); — (c(¥)(R* = 5%)),, = 0.

Hence, the fact that the total energy (2.4) is conserved follows from integrating the above identity
in space and assuming that the functions R, S decay at infinity.

2.3. Variational formulation. We seek an approximation (R, S,) of (2.3) such that for each
t€[0,T], R, S, and ¥ belong to finite dimensional space

XR,(Q)={ue L*(Q): ulg, polynomial of degree < p} .

The variational form is derived by multiplying the strong form (2.3) with test functions ¢,n, ¢ €
XX ,(Q) and integrating over each element separately. After integrating by parts we obtain

(2.6)

N N N N
S /Q Rogdr+3 /Q CRowdr — S (CR) (w5112 )67,1 o + SR Wy 1/2:0)67 1
j=17%% =179 = =

N N N
1 1 L 1 -
252/9 c(R9)s 526 (Tjr1/2,t )Rj+1/2¢j+1/2 526 (j—1/2,1)) j71/2¢j71/2
j=1 J 1 j=1

j=
N N

N
1 1 _
D) Z/Q (5¢)s dz + ) ZC Ti+1/2:0))55 1295412 — ) Z Tj-1/2:1))S]" - 1/2¢J 1/2)
j=1"% j=1

—_

(2.7)
N N
Z/ Sy ndx — Z/ cSn, dr + Z cS)(p(xjq41/2,1))0; Mii1)2 Z(CS)(w(xj,l/g, t))r]jtl/2
j=1 j=1
N N

1 _ _ 1
= iz\/sl C(Rn)md Z $j+1/27 )R]+1/277]+1/2+ 5ZC(w(xj_l/Q,t))Rj71/27’;71/2
=179

j=1 j=1
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_éi/gc

j=1"7%%

N N
_ _ 1
E : x]+1/27 )Sj+1/277j+1/2 - 5 E C(w(xjfl/%t))S;__l/Qn;__l/g

Jj=1

l\')\»—t

and

al X[ R+S
(2.8) ;/szpwdx—;/chd

To obtain a numerical scheme, the numerical fluxes (cR)(¢(;41/2,t)), (¢S)(¥(2j41/2,t)) and
(c)(¥(x41/2,t)) all need to be determined.

2.4. Energy Preserving Scheme Based On System of Riemann Invariants. Our objective
is to design a (semi-discrete) DG scheme such that the numerical approximations conserve a
discrete version of the energy (2.26). To this end, we suggest the following:

For a conservative scheme, we use the numerical flux

() (W(xjz1/2,1) = Ca1ja and  (cf)((jz1/2,)) = Cia1y2f j1/0-
Thus, for the RS-formulation the DG scheme then becomes: Find R, S,¢ € XX _(£2) such that

N N N N
Z/Q Ripdx + Z/Q cRo dr — Zéj+1/2ﬁj+1/2¢j_+1/2 + sz—1/2Rj—1/2¢;__1/2
=179 =179 =

j=1

N N
1 1l —_ _ _
=33 [, (RO dr = 5 3B aR e
(2.9) : J _7:1
1 N . . 1 N
T3 Z G128y )o@ 1yn — 5 Z/Q c(5¢), dz
Jj=1 j=1"7%

N N

- + +
Z Cj+1/2 +1/2¢’g+1/2 ch—1/25j71/2¢j71/2
j=1 j:1

for all ¢ € X% (),
N N N . N .
Z/Q Syndx — Z/Q cSneda + ) Tii1/2841/2M5 410 — D G129 12M 1
=14 j= j j=1 j=1
1 N N
D) Z c(Bn), dr — Z Civ1/2B 1 oM
= ] 1

N N

1

52 1/2RJ 1/277j 1/2 Z/Q C(Sn)x dl‘
j=1 j=1 J

(2.10)

1 - + +
+35 Z Cj+1/2 ]+1/277]+1/2 - izcj—1/2sj71/277j71/2
j=1

for all n € XX () and

Y [ R+S
(2.11) ;/@ngdm_;/ﬂj2gd

for all ¢ € XX, (Q).
The energy conservative property of this semi-discrete scheme is presented in the following
theorem:
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Proposition 2.1 (Energy conservation). Let R, S € XX () be a numerical solution of the semi-
discrete scheme (2.9)—(2.11) with periodic boundary conditions. We then have

N 2 2
(2.12) Z/ #dx =0.

t

Proof. Since R and S are a numerical solution then (2.9) and (2.10) hold for any functions
¢,n € XX,(Q). In particular, they hold for the choice ¢ = R and n = S. We can then cal-
culate

Z/ RthszfZ/ (SR), dz + = Zc]+1/2RJ+1/2RJH/2

(2.13) —*ZCJ 2R R 127 5 ZCJH/? Siv1/2Bi1s2
Jj=1
|
52 1/2 1/2 j1/2
and
z [, sisar= D 3 RTINS S
j=1 Q; j=1
1
(2.14) "’5 Ej—1/2S 1/2 ] 1/2 ZCJ+1/2 j+1/2 ]+1/2

Jj=1

N
+
Z ~1/25 1/2 j—1/2°

I\D\’—‘

Putting these together we obtain

N 2 2
SR
LTI

M-

Q

1 J

ﬁ
<
Il

N

+ —
Z +1/2( g+1/2RJ+1/2 S]+1/2S]+1/2)
j=1

N
Z 1/2( j— 1/2Rj—1/2 _55—1/2SJ+—1/2)

N |

(2.15)

l\J\»—A

1_ _ _
= §CN+1/2 (RN+1/2RN+1/2 SN+1/2SN+1/2)

1_
~ 942 (R1/2R1/2 51/251/2> =0,
where we have used the periodic boundary conditions in the last equality. O

Remark 2.1. Proposition 2.1 and similar results to follow are presented for periodic boundary
conditions. Naturally, these results also hold when the numerical solution decays at the boundary.

2.5. Energy dissipating Scheme Based On System of Riemann Invariants. We expect
the above designed energy conservative scheme (2.9)—(2.11) to approximate a conservative solution
of the underlying system (1.3). In order to be able to approximate a dissipative solution of (1.3),
we add numerical viscosity (scaled by the maximum wave speed) as well as a shock capturing
operator (similar to Barth [4]) to the energy conservative scheme (2.9)—(2.11). We propose the
following modification of the energy conservative scheme (2.9)—(2.11):
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Denoting
_ - +
Si1/2 = max{Ci Ly 5, ¢y o}

for the maximal local wave velocity, a dissipative version of the DG scheme is then given by the
following: Find R, S, € XX () such that

(2.16)

N N N 1

Z/Q Ripdx + Z/Q cR¢,dx — Z ((Cj+1/sz+1/2 +555+1/2 [[R]]j+1/2> D12

j=1" g=17%% j=1

Diffusive flux

N
- 1
+2 (le/szw * 2311/2[[}2]]”/2) (Rl

j=1

Diffusive flux

N
1 _ _ _
/Q C(R¢)z dz — 5 ch+1/2Rj+1/2¢j+1/2
1 =1

N | N
Zéj—l/zR;Ll/QqS;;l/Q - 52/9 c(5¢), dz
=179

Jj=1

N N N
1 1
= - - = + +
T3 Z Cj+1/2511 /2954172 ~ 5 ch_l/sz_1/2¢j_1/2 - 251/9 Rydpdz
j:l j:l j:l J

shock capturing operator

Mz

1
2

<.
Il
&

+

DO =

for all ¢ € X% (),

(2.17)
N N N . 1
> Smda - Z/ cSnada + (Cj+1/25j+1/2 - 23j+1/2[[5]]j+1/2> M 41/2
j=1"% j=17% j=1
Diffusive flux

N
I 1
- (le/zsjl/z - 28j1/2[[5]]j1/2> "1

j=1
Diffusive flux
1 N
52/9 c(Rn),dz — 5 ch+1/2Rg+1/2773+1/2
1754 J 1

[\D»—l?

N N
z Z 1/2RJ 1/2’7; 12— Z/Q c(Sn), dz
i=1 j=17%

[t

l\D

N N N
1
= + +
Z C1/255 119" 1 0 5297‘*1/253‘—1/2’73‘—1/2 - ij/ﬂ Szizdr
j=1 =1 j=1 i

shock capturing operator

for all n € XX (Q) and

N N R+S
de = S|
;/ﬂjwtw ;/ﬂ "2

(2.18)

for all ¢ € XX ().
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The scaling parameter €; in the shock capturing operator is given by

A$3C%

(2.19) e = -
(fQj (R2 4+ Sg)dx> + A;v?

where C' > 0 is a constant, § > 1/2 and

1/2
(2.20) Res = (/QJ (Res) da:)
with
(2.21) Res = (R* + 5%); — (c(v)(R* — 57)) .

Note that ¢; vanishes for smooth solutions.
We have the following theorem illustrating the energy dissipation associated with (2.16)—(2.18).

Proposition 2.2 (Energy stability). Let R,S € XX, () be a numerical solution of the semi-
discrete scheme (2.16)—(2.18) with periodic boundary conditions. We then have

N

R? + 6?2
2.22 ———dz <0.
(2.22) g /Q s <

Proof. First, we calculate

(2.23)

N =

N N

_ 1
DETIVAL FYN RPN MY 1) AV 3
j=1 j=1

N N
1 _ 1
+’§'§ Si41/2080j1/287 10 — 5 > 55120811281 o
j=1 j=1

N
1
= =5 sierjz (IRE 1o + [S1472) <0,
j=1
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since sj11/9 > 0 for all j. Since R and S are a numerical solution, we can use (2.16)—(2.17) with
¢ = R and n = S, and proceed in a manner similar to the proof of Proposition 2.1 to estimate
(2. 24

2 2 N
/ R +S Br5 g, :Z/ (RR, + SS,) dz
” Q.
T

1_ _ _
= 9ON+1/2 (RN+1/2RN+1/2 SN+1/QSN+1/2)

N
1_ 1 _
R (R1/2R1/2 51/251/2) 5 Zsj+1/2[[R]]j+1/2Rj+1/2
j*l

ZSJ 1/2[[RHJ 1/2RJ 1/2+ ng+1/2[[5]]g+1/25 i+1/2
j 1

ZSJ 1/2“5]]] 1/2 1/2 ZEJ/ R2+SQ

1_ _ _
= §CN+1/2 <RN+1/2RN+1/2 SN+1/25N+1/2)

1_
— 542 <R1/2 1/2 Sl/QS;r/Z) Zsj+1/2 ([[Rﬂ§+1/2 + [[S]]?+1/2>
j:l

N
—Zej/ (R? +52)dz <0,
j=1 7%

where we have used the compact support in the last inequality. O

Hence, the scheme (2.16)—(2.18) is energy stable (dissipating) and we expect it to converge to a
dissipative solution of (1.3) as the mesh is refined. We remark that energy dissipation results from
adding numerical viscosity (scaled by the maximum wave speed) and a shock capturing operator
to the energy conservative scheme (2.9)—(2.11).

2.6. An alternative first-order system. It is easy to check that the variational wave equation
(1.3) can be rewritten as a first-order system by introducing the independent variables:

o

() s

Again, for smooth solutions, equation (1.3) is equivalent to the following system for (v, w,):
— (c()w)y = —co(P)w

(2.25) = (e()v)e =0
7/% =v

Furthermore, the energy associated with the above equation is

(2.26) E(t) = /R (v* 4+ w?) dz.

v
w

Il
o

Again, we can check that smooth solutions of (2.25) preserve this energy. Weak solutions can be
either energy conservative or energy dissipative.

2.7. Variational formulation. As before, we seek an approximation (v, w, 1) of (2.25) such that
for each t € [0,T], v, w, and @ belong to finite dimensional space

XR,(Q) = {u € L*(Q) : u|q, polynomial of degree < p} .
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The variational form is derived by multiplying the strong form (2.25) with test functions ¢, 7, ¢ €
XX, (Q) and integrating over each element separately. After using integration-by-parts, we obtain

N N N N
(2.27) Z/ vt ¢dx+2/ c(Y)weo, do — Z(cw)j+1/2¢;+1/2 Z cw)j_ 1/2¢] 1/2
j=17% j=17% j=1 j=1
N N N
= Z/Q () (we), dx—Z( )J+1/2w]+1/2¢3+1/2 Z i= 1/2w] 1/2¢] 1/2
Jj=1 J Jj=1 j=1
and
N N N N
(2.28) Z/ wy ndz + Z/ c()vn, dr — Z(cv)j+1/277]-_+1/2 + Z(Cv)j—yzﬂf_lﬂ = 0,
j=17% j=17% j=1 j=1
and

N N
(2.29) ;/ijthx:;/ijCdx.

As before, the numerical fluxes (cv);j41/2, (cw);41/2 and (¢)j41/2 all need to be determined.

2.8. Energy Preserving Scheme. As before, for a conservative scheme, we use the numerical
flux
(C)jil/Q =Cjr12 and  (cf)jr1/2 = 5ji1/27ji1/2~

Then, for the vw-formulation the DG scheme becomes: Find v, w, ¢ € X} ,(Q) such that

N N
(2.30) Z/( Ut¢d$+2/g c(V)wey do — ZCJ+1/2UJJ+1/2¢J+1/2+ZCJ 1/2W;— 1/2@5] 1/2
=175 =175

Jj=1
N N
= Z/ (1) (w¢)z dz — Zéj+1/2w;+l/2¢;+1/2 + Zéj*1/2w;r—1/2¢;r—1/2
j=17%% j=1 j=1
and
(2.31)
N N
Z/ wy ndz + Z/ c(y)vn, dr — ZCJ+1/2UJ+1/277 i+1/2 + ZCJ 1/205— 1/277] 12 = 0,
j=1% =179 j=1
and

N N
2.32 de = de,
(2:32) ;/ijtc:c JZ_}/ijc:c
for all ¢,n, ¢ € XX, (Q).

We have the following theorem for the scheme:

Proposition 2.3 (Energy conservation). Let v,w € XX () be a numerical solution of the semi-
discrete scheme (2.30)—(2.32) with periodic boundary conditions. We then have

N
(2.33) ;/ﬂj@ +w?)dz | =0.

t
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Proof. Since v and w are a numerical solution then (2.30) and (2.31) hold for any functions
¢,n € XX ,(Q). In particular, they hold for the choice ¢ = v and n = w. We can then calculate
(2.34)

N N
Z/Q (v +w?)dz | =2 Z/ﬂ (vev + wyw) dt
j=1 J ‘ j=1 i

N
=2 Z(EJH/? (Ej+1/2vj_+1/2 — W19V T §j+1/2wj_+1/2)
j=1

. - + + o = +
tCj-1/2 (_wj*1/2vj—1/2 WiV 10 Uj*1/2wj—1/2>>
N
=2 ZEJ+1/2 (_wj+1/2[[vﬂj+1/2 + [wv]j41/2 — 5j+1/2[[w]]j+1/2) =0,
j=1

where we have used the periodic boundary conditions and the identity (2.1). O

2.9. Energy Dissipating Scheme. In-order to approximate dissipative solutions, we again add
some numerical viscosity and a shock capturing operator to the energy conservative scheme (2.30)—
(2.32) to obtain the following dissipative scheme: Find v,w,v¢ € XX, (Q) such that

(2.35)

N N N
_ _ 1 _
Z/ v pdz + Z/ c(P)wey dz — Z (Cj+1/2wj+1/2 + 55i+1/2 [['U]]jJrl/Z) ¢j+1/2
j=17%% j=17%% j=1
al 1
+ Z <Cj—1/2wj—1/2 + 283'—1/2[[”]]3'—1/2) <Z5j+,1/2
j=1
N N N N
= Z/ e(®) (o), Az = Y T /mwiy 0071+ D T2y p0l = ) / Uz $ada.
=179 j=1 j=1 j=1 7%
for all ¢ € XX (),
N N N 1
(2.36) Z/Q wy ndz + Z . c(i)vn, dz — Z (Cj+1/2vj+1/2 + 55i+1/2 [[w]]j+1/2) Mj41/2
j=1 J j=1 J Jj=1
N ] N
+ (Cj—l/zvj—l/z + zsj—l/z[[w]]j—l/z) M oije=— Zﬁj/ﬂ wynpde,
Jj=1 j=1 i

for all n € XX () and

N N
(2.37) ;/ﬂjwtgdx:;/ﬂjvgd%

for all ¢ € XX ().
Expressed in v and w, the parameter ¢; is given by

ASC]' C%
1/2
(fﬂj (v2 + w%)dm) + Am?
where C' > 0 is a constant, § > 1/2 and

(2.39) Res = < /Q |

J

(238) g5 =

1/2
(Res)de> . Res=(v®+ wz)t — (2c(¥)vw), .

We show that the above scheme dissipates energy in the following theorem:
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Proposition 2.4 (Energy stability). Let v,w € XX _(2) be a numerical solution of the semi-
discrete scheme (2.35)—(2.37) with periodic boundary conditions. We then have

N 2 2
(2.40) Z/ W] <o
=l 2

t

Proof. Since v and w are a numerical solution, we can use (2.35)—(2.36) with ¢ = v and n = w
and estimate
(2.41)

N 9 9 N
Z/ v 42’ w dz = Z / (’UtU + ’lUt’LU) dx
j=17% . =17

= Z(Ej-ﬂ/? (wj+1/2vj+1/2 T Wii1/9Y5 412 +@j+1/2wj+1/2)
j=1

- + + - +
+Cj-1/2 (7wj—1/2vj—1/2 T W9V 10 — ”J'—l/?wj—l/Q))

N
Z(5j+1/2 ([[U]]J'H/?U;rl/z + [[w]]j+1/2w;+1/2>

l\')\»—l

N
=i (B0 + luloaysnl o)) = e [ (02 +02)do
j=1 i

Mz

Civ12 (Wit 2[v]j41)2 + [wolj41)2 — i1 2[w]jsa2)
j=1

N
1
+ 5 Z(SJ+1/2 ([[Uﬂj+1/2vj+1/2 + [[w]]j+1/2w]+1/2)

J=1

— Sj-1/2 ([[U]]j 1/2’(1] 1/2"‘[[10]]] 1/211)] 1/2 ZE]/ ’U -|—’U} d

N
1
D) Z Sj+1/2 ([”]]?H/Q + Hw]]?+1/2) - Z%’ /Q (’Ui + wgzc) dz <0,
Jj=1 j=1 i

where we have used the identities (2.1) as well as the periodic boundary conditions. 0

3. DETAILS ON THE IMPLEMENTATION

All numerical experiments in this article are performed with an uniform grid spacing Az; = Az.
The time step is determined according to
Ax

sup (1)’
Ypel0,m)

At =0.1

Furthermore, for the shock capturing operator, we use C' = 0.1 and 6 = 1.

3.1. Choice of basis. Let Q = [~1,1] be the usual reference domain. As a basis for PP(Q), the
space of polynomials on 2 of degree at most p, we use the Lagrangian interpolants

§—¢&;
(3.1) (§) = ;
g Ogjl_‘lgp Sk —§&;
J#k
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where £;, j = 1,...,p, are the interpolation points. Note that the Lagrangian interpolants satisfy
l;(£a) = din and thus the discrete orthogonality property
»
(32) [ 600600 = Y- pati€atatea) = o
O a=0
where po, @ =0,...,p, are quadrature weights.

We introduce the necessary notation required for representing grid functions and quadrature
formulas in terms of the basis (3.1). Defining the mapping n; : Q; — Q by

—x;
(33 mw) =270
a function f: Q) x [0,T] — R with f(-, ) € XX,(Q) can be written as
p
(3.4) fla.t) = ZXQ DN RIOIACHES)
j=1 k=0

in terms of time dependent coefficients f;k) (t). Moreover, we can use the shorthand notation
(3.5) Fi(&t) = fn; 1 (€),1)

for evaluating f on the reference domain. In addition, it is convenient to denote ¢; () = ¢ (@](f))

The integrals appearing in the DG formulation must be approximated using quadrature. Let
f € XK., () and represented by (3.4). We can then readily calculate the approximations

R O ey N A NGRS A””Zpa (Z (1), mm) (60)
(3.6) -Le i (Z (59 %) = 70 (19

/Q (V) f(x, )i (n;(2)), da = /Q i () F;(&.0)(6) dE = Zpacj (&) (Zf“% €a >é’<5a>

J a=0
p P
(3.7) =" paci(Ca) (Z f§’“>5m) 6(€a) = pac;(Ea) £ Dai,
a=0 k=0 a=0
P
/Q () f (x,)ti(n; (x)) dx = /ch@)ﬂ(&,t)s&(é) de =" paci(€a) (Z A )ez €a)
J a=0
(3.8) =" paci(ta) (Zf}’%(ga)) io = pici(€) Y £ D,
a=0 k=0 k=0
(39) ety @)ede = 1 | FEnet©c = 1 3 puf DD

Qj a=0 k=0

and

(310) JRCCOBRTE sza@f’“ )
a=0 1

where we have introduced the derivative matrix D;; = £’(&;).

For the interpolation points £, on the reference domaln we use the Gauss—Lobatto—Legendre
(GLL) points. This is a set of points particularly convenient for the implementation since they
contain the end points. In this paper we will present numerical experiments for p = 0,1,2, 3.

J
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The GLL points, weights, Lagrangian interpolants and their corresponding derivative matrices are
omitted here, but can be found in Appendix A.

3.2. Runge—Kutta time discretization. The schemes derived in this paper are all in a semi-
discrete form

Uy = f(t7qu)7

where uay is the discrete solution. The RKDG method utilizes the Runge-Kutta (RK) time
marching scheme to advance the solution. Herein, the spatial accuracy in the semi-discrete scheme
should be matched with an equally accurate RK scheme to obtain the desired order of accuracy
for smooth solutions. Therefore, the following fifth-order RK algorithm was used in this work
[25]: Let u’k, be the discrete solution at time ¢" and let At™ = ¢"*1 —¢". The solutions is then
advanced according to

ki = f(tnvuZz)
LAAET A
=t (t LRSI 11’“1>
oy 201 2At” oy A
( A"

t

y (9k: + n/@))

f

flLt"+(6 Atn A +A (
)70 “a 5o

At™
600

o~

(81 + 9V/6)ky + (255 — 55V6)ks + (24 — 14V6)k ))
((81 — 9V6)k1 + (255 + 55V/6)k3 + (24 + 14V6)k ))

6=f< (6+f> L
Y %At” (4k1 + (16 + V6)ks + (16 — \/é)kﬁ) :

4. NUMERICAL EXPERIMENTS

In the following, we perform numerical experiments to demonstrate the properties of the present
DG schemes for p = 0,1,2,3. Henceforth, the schemes (16 in total) will be named according
o (formulation)(p){c/d). For example, the piecewise linear conservative scheme using the RS
formulation will be referred to as RS1lc and the piecewise cubic dissipative scheme using the vw
formulation will be referred to as vw3d.

4.1. Order of convergence to manufactured solution. One of the main attractions of the
discontinuous Galerkin scheme is the easy construction of high-order methods. In the following, we
numerically demonstrate the order of convergence for smooth solutions. As previously discussed,
the non-linear variational wave equation exhibits blow up in finite time and thus no global smooth
solutions are known. However, the order of accuracy can be obtained by using the method of
manufactured solutions. If we assert that

(4.1) Y(x,t) = sin(z — 1)

then we can for the formulation (2.3) calculate the residual

(V)

2
# (R —8) =sin(z —t) (*(¥) — 1) — c(4)c (¢) cos?(z — 1)
Also, for the formulation (2.25) we have

(4.3) vy — c(P)we = Q(x, 1)

(42) Q(z,t) := Ry — (c(¢)R)a + (R—S5)

=S + (C(¢)S)z +
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TABLE 4.1. The order of convergence at ¢t = 1.0 for the manufactured sine solu-
tion (4.1) for the RS formulation using N = 20 x 2°.

| i 4 | 5 6 7 | 8
RSOc | e2f | 2.279-1073 | 5.698 - 10~* | 1.424-10~* | 3.561-107°> | 8.901-10~6
rate - 2.000 2.000 2.000 2.000
RS0d | ef¥ | 4.053-1072 | 2.063-1072 | 1.041-107% | 5.231-107% | 2.622- 1073
rate - 0.974 0.986 0.993 0.996
RSlc | ef¥ | 3.925-1072 | 1.962- 1072 | 9.811- 1073 | 4.906 - 1073 | 2.453 1073
rate - 1.000 1.000 1.000 1.000
RS1d | e2¥ | 3.590-1073 | 9.068 - 10~ | 2.275-107* | 5.695-1075 | 1.425-107°
rate - 1.985 1.995 1.998 1.999
RS2c | ef¥ | 1.820-107° | 2.255- 1076 | 2.812- 107 | 3.513-10% | 4.390-107°
rate - 3.013 3.003 3.001 3.000
RS2d | e2¥ | 2.090-1075 | 2.594-1076 | 3.235-1077 | 4.040-1078 | 5.049-10~°
rate - 3.010 3.003 3.001 3.001
RS3c | e2f | 2.445-107¢ | 3.058- 1077 | 3.822-107% | 4.777-107° | 5.971-10~1°
rate - 2.999 3.000 3.000 3.000
RS3d | ef¥ | 2.577-1077 | 1.609 - 10~% | 1.005-107% | 6.282- 10711 | 3.926 - 1012
rate - 4.001 4.001 4.000 4.000
and
(4.4) wy — (c(P)v), = 0.
Thus, (4.1) will be a smooth solution to the problems
C
R~ (e)R), = - (R - 5) 1 Q(a.t)
Cx
51+ (c)9): = - (R - 9) 4 Qe
and

v = (e(P)w)e = —co(P)w + Q(2,1)
wi = (c(¥)v)e =0,

which differ from the original problems only through the local source terms Q(x,t). The spatial
and temporal accuracy of the schemes can then be calculated by solving with the extra source
terms, using periodic boundary conditions and approximating the error as

1/2

N p
(4.5) epy = % SN posin(af, t) — e (s, Ol ,
j=1a=0
where 2§ =z + Az (j + %ga).

Table 4.1 shows the error and the rate of convergence for the RS schemes and Table 4.2 for the
vw schemes. The piecewise constant (p = 0) schemes demonstrate second order convergence. For
odd polynomial orders p the conservative schemes exhibit sub-optimal convergence rates, a type of
behavior that has been observed for the discontinuous Galerkin method when using central fluxes
[29]. For the other schemes the order of convergence is optimal (p + 1).

4.2. Gaussian initial data. A basic test problem for the nonlinear variational wave equation is
obtained by considering the smooth initial data

(4.6) Y(x,0) = % + exp (—x2) ,
(47) 1/%(95, O) = 70(#’(11’ 0))7/}7"(55’ 0)7
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TABLE 4.2. The order of convergence at ¢t = 1.0 for the manufactured sine solu-
tion (4.1) for the vw formulation using N = 20 x 2°.

| i 4 | 5 6 7 | 8
vwlc | ef¥ | 2.279-1073 | 5.698 - 10~* | 1.424-10~* | 3.561- 107> | 8.901-1076
rate - 2.000 2.000 2.000 2.000
vwOd | ef¥ | 5.294-1072 | 2.676- 1072 | 1.345-1072 | 6.746-103 | 3.380-107%
rate - 0.985 0.992 0.996 0.998
vwle | eff | 4.096-1072 | 2.046-1072 | 1.022- 1072 | 5.109-1073 | 2.554 103
rate - 1.002 1.001 1.000 1.000
vwld | e2¥ | 3.590-1073 | 9.068 - 10~* | 2.275-107* | 5.695-107° | 1.425.1075
rate - 1.985 1.995 1.998 1.999
vw2c | ef¥ | 1.820-107° | 2.255-107° | 2.812- 1077 | 3.513-107% | 4.390-107°
rate - 3.013 3.003 3.001 3.000
vw2d | ef¥ | 1.852-107° | 2.296 - 1076 | 2.863 - 1077 | 3.575-107% | 4.468-107°
rate - 3.013 3.003 3.001 3.000
vw3c | ef¥ | 2.445-1076 | 3.058-1077 | 3.822-107% | 4.778-107° | 5.971-1071°
rate - 2.999 3.000 3.000 3.000
vw3d | eff | 2.577-1077 | 1.609 - 1078 | 1.005-10° | 6.282- 107! | 3.926 - 10~ '2
rate - 4.001 4.001 4.000 4.000

for z € R. This problem has been tested numerically in the literature [16, 20]. It is an example of
an initial-value problem with smooth initial data that exhibits blow-up in finite time.

The initial data (4.6)—(4.7) was solved numerically using the vw schemes with o = 0.5 and
B = 1.5 for t € [0,10] using N = 1000. Results for the RS schemes are similar, and are omitted
here to avoid unnecessary redundancy. Figure 4.1 shows the results when using the conservative
schemes and Figure 4.2 using the dissipative schemes. Also, Figures 4.3 and 4.4 show the evolutions
of the auxiliary variables v = ¢; and w = ¢(¥)¥, for the conservative and dissipative piecewise
cubic schemes, respectively. The results are consistent with those reported by Holden et al. [20].
Despite the initial data being smooth, the solution develops a singularity in v, at around ¢t = 6.
After this time, spurious oscillations can be observed in the numerical solutions when using the
conservative schemes. This effect is not present when using the dissipative schemes.

The schemes derived in this paper have been categorised into conservative and dissipative
schemes. Figure 4.5 shows the evolution of the discrete energy

N 2 2 A N p
W e e S () (5)),
1= J

=1 k=0

or alternatively for the vw formulation

N 2 2 N P
(4.9) E:Z/ﬂ_v -;w dx:%ZZPk (<v§k))2+<w§k))2>’
j=1"7% j=1 k=0

for the Gaussian test problem. The results demonstrate clearly the difference between the dissipa-
tive and conservative schemes. Indeed, no significant change in the discrete energy can be observed
for any of the conservative schemes. Conversely, the dissipative schemes all cause a reduction in
the energy.

A key aspect of the nonlinear variational wave equation is the existence of both conservative
and dissipative weak solutions. The schemes derived in this paper enables us to investigate this
numerically. Figure 4.6 show the numerical solution to the Gaussian test problem with @ = 0.5
and 8 = 4.5 using the conservative (vw3c) and dissipative (vw3d) piecewise cubic schemes. The
results clearly indicate that the solution, while initially smooth, develops a singularity at about
t =5 (see Fig. 4.6a). After the formation of the singularity we observe that the conservative and
dissipative schemes give two distinct solutions, as shown in Figure 4.6b. Table 4.4 shows that the
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2.0

1.5¢
1.0
= 0.57
0.0p

—0.5+

-1.0

_15 -15

-10 -5 0 5 10 15 -10 -5 0 5 10 15
x x
(c) vw2c (D) vw3c
FI1GURE 4.1. The numerical solution of the Gaussian test problem with o = 0.5

and 8 = 1.5 using the conservative schemes based on the vw formulation with
N = 1000.

TABLE 4.3. The error ||1) — t)ref]|2 for the vw schemes at ¢t = 1 for the Gaussian
test problem with o = 0.5 and 3 = 1.5 using N = 20 x 2¢. The reference solution
was computed using the vw3c scheme with N = 25000.

i 3 | 4 5 6
vwOc | 7.221-1072 | 3.176 - 1072 | 1.528 - 102 | 7.561 - 103
vwOd | 1.902-107! | 1.047-10"! | 5.533-1072 | 2.851 - 102
vwlc | 8.465-1072 | 4.180-1072 | 2.083-1072 | 1.041 - 10~2
vwld | 3.490-1072 | 9.704 - 1073 | 2.523-1073 | 6.396 - 10~*
vw2c | 7.566 - 10~* | 7.650- 1075 | 9.288-1076 | 1.151-10©
vw2d | 7.373-10"* | 7.770 - 1075 | 9.384-10-6 | 1.164- 106
vw3c | 5.547-107° | 6.870- 107 | 8.568 - 10~7 | 1.070 - 10~ 7
vw3d | 2.612-107° | 1.634-107% | 1.023-10"7 | 6.397 - 1079

rest of the conservative schemes indeed converge to the conservative reference solution shown in
Figure 4.6b. Conversely, the dissipative schemes converge to the dissipative (dashed) solution in
Figure 4.6b, as shown in Table 4.5. We note that in both cases the convergence is in IV as well as
in p. Also, as can be expected, after the blow up of 1, the rate of convergence is slower than for
the smooth manufactured solution.
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T T

(c) vw2d (D) vw3d

FIGURE 4.2. The numerical solution of the Gaussian test problem with a = 0.5
and 8 = 1.5 using the dissipative schemes based on the vw formulation with
N = 1000.

: 2
3o t=0 e t=0
--- t=5 I --- =5
2 — =10 — t=10
8 0 S
- =
= 1 =
[ P-n
o] Y . 3
_2,
_17
_3,
215 —10 =5 0 5 10 15 -15 -10 -5 0 5 10 15
T T
(a) v (B) w

FI1GURE 4.3. The numerical solution of the Gaussian test problem with o = 0.5
and 8 = 1.5 using the vw3c scheme with N = 1000.

. Travelling wave. Glassey et al. [17] discuss weak travelling wave solutions

la,t) = Y@ — st)

19
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v
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(a) v

FI1GURE 4.4. The numerical solution of the Gaussian test problem with o = 0.5
and 8 = 1.5 using the vw3d scheme with N = 1000.
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(c) Piecewise quadratic
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(B) Piecewise linear
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t

(D) Piecewise cubic

FIGURE 4.5. Evolution of the discrete energy (4.8) and (4.9) for the numerical
solution of the Gaussian test problem with o = 0.5 and 5 = 1.5 using N = 1000.

for the non-linear variational wave equation. Such a solution must fulfil

(4.10)

/12 — acos? (v) — Bsin(v)] = k,
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2.0 2.0

1.5 1 15

1.0r

-1.0

FIGURE 4.6. The numerical solution of the Gaussian test problem with oo = 0.5
and 8 = 4.5 using the conservative vw3c (solid) and dissipative vw3d (dashed)
schemes using N = 10000. The dotted line is the Gaussian initial data.

TABLE 4.4. The error ||t — etz for the conservative vw schemes at ¢t = 12 for
the Gaussian initial with o = 0.5 and 8 = 4.5 with N = 20 x 2¢. The reference

-20

-10

(B) t=12

solution was computed using the vw3c scheme with N = 10000.

i |3 | 4 | 5

|6

7

vwOc | 2.8578 | 4.5302 | 4.2199
vwle | 4.9764 | 4.3353 | 3.5673
vw2c | 2.3927 | 1.3466 | 1.2581
vw3dc | 1.1941 | 0.7812 | 0.5205

TABLE 4.5. The error ||1) — ¢z for the dissipative vw schemes at ¢ = 12 for
the Gaussian initial with o = 0.5 and 3 = 4.5 with N = 20 x 2. The reference

3.5382
3.0770
1.1201
0.3233

3.0693
2.8096
1.0295
0.1284

solution was computed using the vw3d scheme with N = 10000.

i |3 | 4 ] 5

| 6

7

vw0d | 2.1145 | 2.5536 | 2.3978
vwld | 1.7964 | 1.8323 | 1.3663
vw2d | 1.5586 | 1.2176 | 0.8640
vw3d | 0.6370 | 0.3370 | 0.1764

where k is some integration constant. By choosing s = «

(4.11) ' sin(y) = i

1.9990
0.8331
0.4668

0.0897

1/2

= BI7E

1.5677
0.4608
0.2050
0.0417

we can write

21

Then by integrating (4.11) with boundary conditions ¥(0) = 0 and (1) = 7, we obtain a

travelling-wave solution given explicitly as

0
(4.12) P(x,t) =< cos™ (=2(z — Vat) + 1)

™

x < /at
vat <z <14 /ot

x>14/at
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with
0 x <ot

(4.13) Ve, t) = ﬁ Vat <z <1+ /at.
0 x> 1+ at

We numerically solve the initial value problem given by the nonlinear variational wave equation
and the initial data (4.12)—(4.13) with o = 0.5 and g = 1.5. Figure 4.7 and Figure 4.8 show the
numerical solution at ¢ = 1 with N = 1000 using the conservative and dissipative RS schemes,
respectively. Results for the vw schemes are similar, and are omitted here to avoid unnecessary
redundancy. The numerical solutions are consistent with those reported by Koley et al. [22]. We
observe that the strong singularities at the break points cause some numerical irregularities, but
overall the schemes are able to capture the travelling wave and become more accurate for higher
polynomial order p.

3.5 3.5
-~ |Initial data -~ Initial data
307 — Exact solution 307 — Exact solution
25l * " Numerical solution 25l " Numerical solution
2.0p 2.0p
s 1 > 15 ’
, ,
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// //
/ /
0.5F ' 0.5F /
1 PP ’
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FIGURE 4.7. Numerical solution of the travelling wave initial-value problem with
a =0.5and f = 1.5 at t = 1 using the conservative schemes based on the RS
formulation with N = 1000.

5. CONCLUSION

We have considered a nonlinear variational wave equation that models one-dimensional planar
waves in nematic liquid crystals. The variational wave equation (1.3) was written in the form
of two equivalent first-order systems. An intrinsic property of this equation is the formation of
singularities in finite time and the existence of both conservative and dissipative weak solutions. We
have constructed robust discontinuous Galerkin schemes for approximating the variational wave
equation in one space dimension. The key design principle was energy conservation (dissipation),
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FIGURE 4.8. Numerical solution of the travelling wave initial-value problem with
a = 0.5 and 8 = 1.5 at t = 1 using the dissipative schemes based on the RS
formulation with N = 1000.

and we have designed high-order semi-discrete schemes that either conserve or dissipate the discrete
energy.

Extensive numerical experiments have been presented to illustrate the properties of the DG
schemes. The high-order accuracy of the methods was demonstrated using a manufactured smooth
solution. It has been shown numerically that the energy conservative and energy dissipative
schemes converge to two different solutions when the mesh is refined. To the best of our knowledge,
these are the first high-order accurate schemes that can approximate the conservative solutions of
the one-dimensional variational wave equation.

There exists a generalization to the current model for 2D. Similar numerical schemes can be
developed in this case. Herein, the vw formulation must be used since the Riemann invariants are
not defined. This will be the topic of an upcoming paper.

APPENDIX A. GLL POINTS, LAGRANGIAN INTERPOLANTS AND DERIVATIVE MATRICES

A.1. Piecewise constant (p = 0). For the piecewise constant case the single GLL point is §, = 0
with quadrature weight pg = 2. The derivative matrix is in this case simply given by D = 0.

A.2. Piecewise linear (p = 1). In this case the two GLL points are §, = —1, £&; = 1, the weights
are pg = p1 = 1.
The Lagrangian interpolants are then given explicitly by
1-¢ _1+¢€

(A-l) Eo(é)zT, €1(§) 9
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1
2

A.3. Piecewise quadratic (p = 2). In the piecewise quadratic case the GLL points are §, = —1,
&1 =0 and & = 1 and the weights are pg = 1/3, p1 = 4/3 and p, = 1/3.
The Lagrangian interpolants are then given explicitly by

and the derivative matrix is

1 1

(A.2) b)) =58 -1), L) =1~ &, 6= SEE+1).
The derivative matrix then becomes

_% 92 _%
(A.3) D=|(-5 0 2

1l _9 3

2 2

A.4. Piecewise cubic (p = 3). For a piecewise cubic scheme we use the GLL points {, = —1,

& = —+/1/5, & = /1/5 and & = 1. The quadrature weights are given by py = p3 = 1/6 and
p1=p2 =5/6.
The Lagrangian interpolants are given explicitly as

(A.4) lo(€) = —g(m—l) (x2—;> = —g (xg—xQ—;)a:—&-;)),
\/9 :g\/5<x3—\/gx2—x+\/§>7
\/9 :—Z\/5<x3+\gx2—x—\@>,

(A7) 63(6) = Z(m +1) (x - ;) -

(A.5) 6L(8) = (2* - 1)

(A.6) ()z—*\fx ~1)

It
It

oo | Ut
7 N\
8
w
+
8
()
|
Ut =
K
|
at| —
~_

which gives the derivative matrix

o (D) RE(-yD)

(A8) D= 2 (1y/3) 0 sVo £(3-3)
| RV s 0 2 (5+3)
O YOI
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