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Abstract

We consider nozzle flow models for two-phase flow with phase transfer. Such
models are based on energy considerations applied to the frozen and equilib-
rium limits of the underlying relaxation models.

In this paper, we provide an explicit link between the mass flow rate
predicted by these models and the classical subcharacteristic condition of
Chen–Levermore–Liu. In particular, we demonstrate that for sufficiently
small pressure differences, the equilibrium nozzle model will predict a lower
mass flow rate than the frozen model when the subcharacteristic condition
is satisfied.

An application to tank leakage of CO2 is presented, indicating that the
frozen and equilibrium models provide significantly different predictions. This
difference is comparable in magnitude to the modeling error introduced by
applying simple ideal-gas/incompressible-liquid equations-of-state for CO2.
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1. Introduction

We are interested in mathematical models for two-phase nozzle flow,
i.e. flow through an orifice driven by pressure differences between the inlet and
outlet conditions [29]. Such flows are relevant in numerous applications, such
as rocket engine nozzles [28], emergency systems for nuclear power plants [1],
as well as valves and cracks in pipeline systems [2, 13]. Due to the curved
streamlines involved in such flows, one-dimensional averaged models [17, 22]
need to take non-conservative geometry terms into account [4, 12] and solving
the full three-dimensional flow models can be too cumbersome.

Instead, the unknown flow variables may be obtained from energy in-
variants transported along the streamlines. This approach, analogous to the
Hamiltonian methods of classical mechanics, generalizes the Bernoulli prin-
ciple from incompressible flows and has proved highly useful for simplified
modeling of such complex flow phenomena [21, 24].

In this paper, we are concerned with the nozzle flow theory for a two-
phase flow model involving phase transfer. This model, investigated in detail
in [3, 5, 7, 10, 13, 16, 25], may be written as a hyperbolic relaxation system
as follows:

∂t(αgρg) +∇ · (αgρgu) =
1

ε
(µ` − µg), (1a)

∂t(α`ρ`) +∇ · (α`ρ`u) =
1

ε
(µg − µ`), (1b)

∂t(ρuj) +
3∑

k=1

∂xk (ρujuk) + ∂xjp = 0, (1c)

∂tE +∇ · (u(E + p)) = 0. (1d)

Herein, the parameter ε is some characteristic relaxation time, and the indices
g and ` represent the gas and liquid phase, respectively. The volume fractions
αi of phase i satisfy the relation

αg + α` = 1. (2)

Furthermore, ρi is the density, and u is the common velocity vector. For each
phase i ∈ {g, `}, the common pressure p satisfies a separate state relation

p = pi(ρi, ei), (3)
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where ei is the specific internal energy. In addition, E is the total energy of
the mixture, given by

E = αgρgeg + α`ρ`e` + 1
2
ρ|u|2, (4)

where
ρ = αgρg + α`ρ` (5)

is the mixture density. Finally, µi is the chemical potential given by

µi = ei +
p

ρi
− Tsi, (6)

where T is the common temperature and si is the specific entropy of phase
i.

1.1. Outline

In this paper we provide a direct link between the established nozzle
flow theory [13] for the model (1a)–(1d) and the classical subcharacteristic
condition of Chen–Levermore–Liu [6]. More precisely, we establish that if
the flow is driven by a sufficiently small pressure difference, the equilibrium
mass flow rate will be lower than the frozen flow rate when the relaxation
model (1a)–(1d) satisfies the subcharacteristic condition.

This observation is well known in the engineering community [2, 11]. The
purpose of this paper is to emphasize the fundamental mathematical rela-
tionships underlying this observation, and in particular we provide a con-
nection between energy principles and stability principles that to the best
of our knowledge has so far never been made explicit. The subcharacteris-
tic condition is necessary and sufficient for linear stability [26], and it holds
for our current model subject only to fundamental thermodynamic stability
conditions [7].

In this respect, our paper builds heavily on the previous works [7, 8, 13].
We explicitly show how the subcharacteristic condition, as verified in [7],
provides a mathematical relationship between the flow rates derived in [13].

Our paper is organized as follows. In Section 2, we present some es-
tablished theory for general hyperbolic relaxation systems and define the
crucial concept of the subcharacteristic condition. In Section 3, we derive
the energy invariants associated with the frozen and equilibrium limits of the
model (1a)–(1d). In Section 4, we derive some useful differentials and demon-
strate that our models satisfy the subcharacteristic condition. In Section 5,
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we describe the nozzle flow theory associated with these invariants. In this
respect, we consider the theoretical results derived in [13] in the context of
general thermodynamic state equations. In particular, we present explicit ex-
pressions for the predicted mass flow rates and present the essential result of
our paper; the relationship between the flow rates and the subcharacteristic
condition.

In Section 6, we present an application of this theory to the simulation
of tank leakage of CO2. We describe a highly simplified model for phase
transitions, obtained by combining the incompressible and ideal-gas limits of
the stiffened gas equation-of-state [9, 18, 19]. We demonstrate a significant
difference between the equilibrium and frozen nozzle flow models in terms
of the dynamic development of the tank pressure. We also simulate this
problem using a highly accurate equation-of-state for equilibrium CO2. Our
simulations indicate that the difference between the predictions of the equi-
librium and frozen nozzle models is in the order of magnitude as the error
introduced by employing the highly simplified thermodynamic model.

The main conclusions to be drawn from our paper are summarized in
Section 7.

2. Hyperbolic relaxation systems

A general hyperbolic relaxation system in D space dimensions can be
written in the form [6]

∂tU +∇ · F (U) =
1

ε
Q(U), (7)

where U ∈ G ⊆ RN is the vector of N unknown variables, F is the vector
of fluxes, and Q is a source term acting to drive the system towards the
equilibrium state characterized by

Q(U) = 0. (8)

Herein, ε can be interpreted as a characteristic relaxation time and we assume
that the matrix A = ∇UF ·ξ is diagonalizable with real eigenvalues for every
wave number ξ ∈ RD.

The limit cases corresponding to ε → 0 and ε → ∞ will form the main
focus of the investigations of this paper. Following [26], we make the following
definitions:
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• The non-stiff limit is characterized by ε → ∞. In this limit, we may
write (7) as

∂tU +∇ · F (U) = 0. (9)

We will denote (9) as the frozen system.

• The formal equilibrium limit is characterized by Q(U) ≡ 0. This as-
sumption defines an equilibrium manifold [6] through

M = {U ∈ G : Q(U) = 0}. (10)

Imposing local equilibrium, we may express (7) as

∂tÛ +∇ · F̂ (Û) = 0, (11)

for some reduced variable Û(x, t) ∈ Rn, where n ≤ N . Herein, every
Û uniquely defines an equilibrium state E(Û) ∈M .

We will denote (11) as the equilibrium system.

2.1. The subcharacteristic condition

Central to our investigations is the concept of the subcharacteristic con-
dition [14, 30], first introduced by Leray and subsequently independently
found by Whitham. The modern terminology was introduced by Liu [15] for
nonlinear 2× 2 systems.

For general N ×N hyperbolic relaxation systems in D space dimensions,
the condition may be stated as follows [6].

Definition 1. Consider a wave number ξ ∈ RD. Let the N eigenvalues of
the homogeneous system (9) be given by

λ1 ≤ · · · ≤ λk ≤ λk+1 ≤ · · · ≤ λN , (12)

i.e. λk are the eigenvalues of

A =
∂F

∂U
· ξ. (13)

Let λ̂j be the n eigenvalues of the equilibrium system (11), i.e. λ̂j are the
eigenvalues of

B =
∂F̂

∂Û
· ξ. (14)
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Herein, the homogeneous system (9) is applied to a local equilibrium state
U = E(Û), such that

λk = λk(E(Û )), λ̂j = λ̂j(Û). (15)

The equilibrium system (11) is said to satisfy the subcharacteristic con-
dition with respect to (9) when the following statements hold:

1. all λ̂j are real;

2. if the λ̂j are sorted in ascending order as

λ̂1 ≤ · · · ≤ λ̂j ≤ λ̂j+1 ≤ · · · ≤ λ̂n, (16)

then λ̂j are interlaced with λ̂k in the following sense: Each λ̂j lies in
the closed interval [λj, λj+N−m].

2.2. Stability

Chen et al. [6] introduced an entropy condition which they proved implies
the subcharacteristic condition. Yong [31] proved that for relaxation systems
satisfying n = N−1, the subcharacteristic condition is necessary for the linear
stability of the equilibrium state. An explicit proof that it is also sufficient
was stated in [26]. Hence for rank 1 relaxation systems the subcharacteristic
condition is precisely the linear stability condition.

3. Energy invariants

Observing that the model (1a)–(1d) is a rank 1 relaxation system as
described in Section 2, we now turn to deriving energy invariants for the
frozen and equilibrium limits of this model.

In particular, we are interested in quantities that remain constant along
streamlines for stationary flows. Noting that streamlines are everywhere
tangent to the local velocity field, we may state the following definition.

Definition 2. Assume that a flow parameter B is constant along streamlines
for steady flows such that

u · ∇B = 0. (17)

Then B is denoted a streamline invariant.

In the present context, this definition is related to the conservation of
scalar quantities as follows.
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Proposition 1. Assume that we for some variable ξ have the conservation
equation

∂tξ +∇ · (ρBu) = 0. (18)

Then B is a streamline invariant for steady flows.

Proof. By adding (1a) to (1b) we observe that for steady flows we have

∇ · (ρu) = 0. (19)

Furthermore,

∇ · (ρBu) = ρu · ∇B +B∇ · (ρu) = ρu · ∇B, (20)

and we recover (17) by dividing by ρ.

3.1. The equilibrium limit

In the equilibrium limit, we recover the classical homogeneous equilibrium
model given by

∂tρ+∇ · (ρu) = 0, (21a)

∂t(ρuj) +
3∑

k=1

∂xk (ρujuk) + ∂xjp = 0, (21b)

∂tE +∇ · (u(E + p)) = 0, (21c)

supplemented with the closure relations

µg = µ` = µ, (22)

pg = p` = p, (23)

Tg = T` = T. (24)

Note that this is precisely the Euler model expressed in mixture variables.
We now define the mixture specific energy, enthalpy and entropy as follows:

e =
αgρgeg + α`ρ`e`

ρ
, (25)

h = e+
p

ρ
, (26)

s =
αgρgsg + α`ρ`s`

ρ
. (27)

We then have the following observations.

7



Proposition 2. The mixture stagnation enthalpy

hs = h+ 1
2
|u|2 (28)

is a streamline invariant for the equilibrium model.

Proof. The result follows from (21c), Proposition 1 and the relation

E + p = ρ
(
h+ 1

2
|u|2

)
. (29)

Proposition 3. The mixture entropy s is a streamline invariant for the
equilibrium model.

Proof. This is a classical result from fluid mechanics, but we state the proof
for completeness. The fundamental thermodynamic differential expressed in
the mixture variables is

de = T ds+
p

ρ2
dρ. (30)

Furthermore, from (21a) and (21b) we have

p

ρ
∂tρ+ ∂t

(
1
2
ρ|u|2

)
+
p

ρ
u · ∇ρ+∇ ·

(
u
(
1
2
ρ|u|2 + p

))
= 0, (31)

which by (21a) and (30) can be written as

∂t(ρe)− ρT∂ts+ ∂t
(
1
2
ρ|u|2

)
+∇ · (ρeu)− ρTu · ∇s+∇ ·

(
u
(
1
2
ρ|u|2 + p

))
= 0. (32)

Comparing this with (21c) yields

∂ts+ u · ∇s = 0. (33)

3.2. The frozen limit

We now turn to the frozen limit of the model, i.e. the model given by

∂t(αgρg) +∇ · (αgρgu) = 0, (34a)

∂t(α`ρ`) +∇ · (α`ρ`u) = 0, (34b)

∂t(ρuj) +
3∑

k=1

∂xk (ρujuk) + ∂xjp = 0, (34c)

∂tE +∇ · (u(E + p)) = 0. (34d)
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Proposition 4. The mass fraction

Y =
αgρg
ρ

(35)

is a streamline invariant for the frozen model.

Proof. We may write (34a) as

∂t(ρY ) +∇ · (ρY u) = 0. (36)

The result now follows from Proposition 1.

Proposition 5. The mixture stagnation enthalpy

hs = h+ 1
2
|u|2 (37)

is a streamline invariant for the frozen model.

Proof. The proof is the same as for Proposition 2.

Proposition 6. The mixture entropy s is a streamline invariant for the
frozen model.

Proof. For this system, the fundamental thermodynamic differential becomes

de = T ds+
p

ρ2
dρ+ (µg − µ`) dY. (38)

By the mass equations (34a)–(34b), we may write (38) as

∂t(ρe) +∇ · (ρeu) = ρT∂ts+ ρTu · ∇s− p∇ · u. (39)

From (34a)–(34c) we may derive the kinetic energy evolution equation

∂t
(
1
2
ρ|u|2

)
+∇ ·

(
u
(
1
2
ρ|u|2

))
+ u · ∇p = 0. (40)

Now using (34d) and (40) we obtain

∂ts+ u · ∇s = 0. (41)
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4. Sound velocities

Having established some mathematical properties of these models, we now
revisit the subcharacteristic condition. Given that this condition is equivalent
to the linear stability of the relaxation process [26], it is expected to hold for
the frozen and equilibrium flow models considered in this paper.

An explicit calculation verifying this condition was given in [7] for the
one-dimensional versions of the models. Due to the space symmetry, the
result carries over also to our full three-dimensional models. In particular,
for our models the subcharacteristic condition in the sense of Definition 1
reduces to [7]

ĉ ≤ c̃, (42)

where ĉ is the sound velocity of the equilibrium model and c̃ is the sound
velocity of the frozen model. In particular, we have [7]:

c̃−2 =

(
∂ρ

∂p

)
Y,s

= ρ

(
αg

ρgc2g
+

α`
ρ`c2`

+
Cp,gCp,`(ζ` − ζg)2

T (Cp,g + Cp,`)

)
, (43)

ĉ−2 = ρ

(
αg

ρgc2g
+

α`
ρ`c2`

+ T

(
Cp,g

(
ζg
T

+W

)2

+ Cp,`

(
ζ`
T

+W

)2
))

, (44)

where

c2i =

(
∂p

∂ρ

)
s

, (45)

Cp,i = ρiαiT

(
∂si
∂T

)
p

, (46)

ζi =

(
∂T

∂p

)
si

, (47)

W =
1

ρgρ`

ρg − ρ`
hg − h`

. (48)

4.1. The subcharacteristic condition

From [25] we have the differential

d(µg−µ`) =

(
β
ρc̃2

ρg
− hgMε

)
d(ρgαg)+

(
β
ρc̃2

ρ`
− h`Mε

)
d(ρ`α`)+Mε d(ρe),

(49)
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where

Θ =
ζgCp,g + ζ`Cp,`
Cp,g + Cp,`

, (50)

β =
1

ρg
− 1

ρ`
+ Θ(s` − sg), (51)

Mε = Pεβ +
s` − sg

Cp,g + Cp,`
. (52)

We may now write (49) as

d(µg − µ`) =

(
β
ρc̃2

ρg
− hgMε

)
d(ρY ) +

(
β
ρc̃2

ρ`
− h`Mε

)
d(ρ(1− Y ))

+ ρMε de+ eMε dρ = 0. (53)

Introducing the shorthand

ν = ρT
(s` − sg)2

Cp,g + Cp,`
(54)

and using (38), we may rewrite (53) as

βc̃2 dρ+
(
β2ρ2c̃2 + ν

)
dY + ρMεT ds = d(µg − µ`). (55)

Using (49) together with results from [8] we obtain the useful pressure dif-
ferential

c̃−2 dp = dρ+ ρ2Θ ds+ ρ2β dY. (56)

We may now use (56) to recast (55) in terms of the pressure:

β dp+ ν dY + ρT
(s` − sg)
Cp,g + Cp,`

ds = d(µg − µ`). (57)

Hence along the saturation line (µg = µ`), we may write(
∂Y

∂p

)
s,sat

= −β
ν

=
1

ρ2ν
·
(
∂ρ

∂Y

)
s,p

. (58)

From equation (6.15) in [7] we may then write

ĉ−2 = c̃−2 + β2ρ
2

ν
, (59)
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and it may now be verified that (42), and hence the subcharacteristic con-
dition in the sense of Definition 1, are satisfied subject only to fundamental
thermodynamic stability constraints.

Herein lies the basis for our paper; as we will now see, it is precisely (42)
that forms the mathematical mechanism to ensure that the equilibrium mass
flux, predicted from energy principles, will locally not exceed the correspond-
ing frozen mass flux.

5. Nozzle flow theory

Having established the energy invariants, we now proceed to describing
how these can be used to model flow through chokes and nozzles. Based on
Propositions 2, 3, 5 and 6, we make the ideal assumption that the following
differential relations are valid throughout such flows.

ds = 0, (60)

d
(
h+ 1

2
u2
)

= 0, (61)

where h is the mixture enthalpy

h = Y hg + (1− Y )h`. (62)

We may then state the following proposition.

Proposition 7. For both the frozen and equilibrium models, the following
differential relation is valid along streamlines for smooth, steady flows:

dh+ u du =
1

ρ
dp+ (µg − µ`) dY + u du = 0. (63)

Proof. This follows from (38), (60), (61) and (62).

We now consider flows from some inlet conditions, denoted with the sub-
script “1”, to some outlet conditions denoted with the subscript “o”. We
assume that the flow is pressure-driven so that

p1 ≥ po. (64)
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5.1. Subcritical flows

Assuming that the flow remains subsonic, the flow will be accelerated
until the flow pressure p2 equilibrates with the outlet pressure, i.e.

p2 = po. (65)

We also assume that the flow accelerates from stationary conditions, i.e.

u1 = 0. (66)

It then follows from (60) and (61) that at the outlet conditions we also have
s2 = s1 = s as well as

u22 = 2 (h(p1, Y1, s)− h(po, Y1, s)) (67)

for the frozen model and

u22 = 2 (h(p1, s)− h(po, s)) (68)

for the equilibrium model.
We now assume that the inlet pressure p1 is fixed but we allow the outlet

pressure po to vary. We may then obtain a useful relation.

Proposition 8. For the frozen model, characterized by

dY = 0, (69)

as well as for the equilibrium model, characterized by

µg = µ`, (70)

the escape velocity u2 in both cases satisfies

du2
dpo

= − 1

q2
, (71)

where q = ρu is the mass flux.

Proof. The result follows directly from using (69) and (70) in (63).

Note that this implies that the derivative of the velocity diverges in the
limit u→ 0.

For subcritical flows, a very general result may now be derived.
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Proposition 9. Under subcritical conditions, the escape velocities of the
two models satisfy the inequality

ũ2 ≤ û2, (72)

where ũ is the velocity of the frozen model and û is the velocity in the
equilibrium model.

Proof. Integrating (63) along a path of constant mass fraction we obtain

1
2
ũ22 = h(p1, Y1 − h(po, Y1), (73)

whereas integrating along the phase equilibrium curve we obtain

1
2
û22 = h(p1, Y1)− h (po, Yeq(po)) , (74)

where Yeq is the phase equilibrium mass fraction. Note that from here on-
ward we neglect the entropy dependence in the notation as s is everywhere
constant. We then obtain

1
2

(
û22 − ũ22

)
= h(po, Y1)− h(po, Yeq) =

∫ Y1

Yeq

(µg − µ`) dY ≥ 0, (75)

where the sign follows from(
∂(µg − µ`)

∂Y

)
p,s

= ρT
(s` − sg)2

Cp,g + Cp,`
≥ 0, (76)

which in turn follows from (57).

We now turn to deriving differentials for the outlet mass flux in terms of
the outlet pressure. Using

dρ =
1

c̃2
dp+

(
∂ρ

∂Y

)
p

dY, (77)

we may now write (63) as

dq =

(
u

c̃2
− 1

u

)
dp+

(
u

(
∂ρ

∂Y

)
p

− ρ

u
(µg − µ`)

)
dY. (78)

We now investigate, in turn, the frozen case and the equilibrium case.
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• Frozen model. In the frozen model, dY = 0 and we may write (78) as

dq2 =

(
ũ2
c̃22
− 1

ũ2

)
dpo. (79)

• Equilibrium model. Now, along the saturation line we have

dY =

(
∂Y

∂p

)
sat

dp, (80)

so that for paths along this line, we have

dq =

(
u

c̃2
+ u

(
∂ρ

∂Y

)
p

(
∂Y

∂p

)
sat

− 1

u

)
dp. (81)

Using (58) and (59), we may write this as

dq2 =

(
û2
ĉ22
− 1

û2

)
dpo. (82)

Proposition 10. If the following equality on the sound velocities holds:

c̃(p, Y1) > ĉ(p) ∀p ∈ [po, p1], (83)

we have
q̃(po) > q̂(po). (84)

Proof. Using (78) and (81), we may write the mass flux difference as

∆q = q̃ − q̂ =

∫ p1

po

(
û

ĉ2
− 1

û
− ũ

c̃2
+

1

ũ

)
dp. (85)

By Proposition 9 and (83), the integrand and hence the integral are positive.

Note that (83) is a sufficient, but not necessary, condition for (84) to hold.
We are now in a position to state the main observation of our paper.

Assume that the inlet conditions are in phase equilibrium, i.e.

Y1 = Yeq(p1). (86)
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Then it follows directly from (59), i.e. the subcharacteristic condition, that

c̃1 ≥ ĉ1, (87)

and in particular, if β 6= 0 in (59), i.e. the subcharacteristic condition is
strictly satisfied, then (83) is guaranteed to be satisfied for sufficiently small

∆p = p1 − po. (88)

This is the direct link between the general subcharacteristic condition of
Chen–Levermore–Liu [6] and the classical nozzle flow theory for mass rates.
In particular, we have demonstrated that for this particular relaxation model,
the fact that the imposed equilibrium condition will decrease the predicted
mass flow rate is a direct consequence of the stability condition (42) on the
relaxation process.

5.2. Critical flows

From (79) and (82), we recover the well-known fact that the mass flow
rate has a critical point at the sonic velocity, i.e.

dq = 0 when u = c. (89)

This has a concrete physical interpretation: If u > c, then all characteristics
would propagate out from the inlet and there would be no way for the flow
to receive information about the outlet pressure. Hence, we may define the
critical pressures p̃c, p̂c implicitly through

h(p̃c, Y1) = h(p1, Y1)− 1
2
c̃2(p̃c, Y1), (90)

h(p̂c, Yeq(p̂c)) = h(p1, Y1)− 1
2
ĉ2(p̂c, Yeq(p̂c)). (91)

These are, according to (73) and (74), precisely the outlet pressures needed
to accelerate the flow to the sonic point.

Hence, when taking critical flows into account, the algorithm to calculate
the flow rates may be specified as follows:

1. Calculate critical pressures according to (90) and (91).

2. Calculate the outlet pressures according to

p̃2 = max(p̃c, po), (92)

p̂2 = max(p̂c, po). (93)
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3. Calculate outlet velocities from the constancy of the stagnation en-
thalpy:

1
2
ũ22 = h(p1, Y1)− h(p2, Y1), (94)

1
2
û22 = h(p1, Y1)− h (p2, Yeq(po)) . (95)

The remaining thermodynamic variables, e.g. the density, may now be found
as functions of the fully determined thermodynamic state (p2, s).

This defines the complete nozzle flow theory. We now illustrate this by
an example, in particular we are interested in evaluating the magnitude of
the mass flux difference (85) in the context of Proposition 10.

6. Modeling tank leakage of CO2

We consider leakage from a tank filled with CO2 in phase equilibrium. If
we assume isentropic leakage, the mass and energy content of the tank will
evolve according to the differential equations

dρ1
dt

= −Q, (96)

dρ1e1
dt

= −Qh1, (97)

where Q relates to the flow rate q through

Q =
A

V
q2, (98)

where V is the total volume of the tank and A is the cross-sectional area of
the tank opening.

We now compare three models for q2:

1. FR: The frozen model based on an ideal gas and incompressible liquid;

2. EQ: The equilibrium model based on an ideal gas and incompressible
liquid;

3. SW EQ: The equilibrium model based on the Span–Wagner [27] ref-
erence equation-of-state.
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6.1. The stiffened gas equation-of-state

The stiffened gas equation-of-state [18, 19] is currently widely used in the
CFD community [9, 23] due to its simplicity and flexibility in modeling the
thermodynamic properties of liquids, gases and even solids. The stiffened
gas model may be fully described by the Helmholtz free energy:

A(ρ, T ) = cV T

(
1− ln

(
T

T0

)
+ (γ − 1) ln

(
ρ

ρ0

))
− s0T +

p∞
ρ

+ e∗. (99)

Herein, the parameters cV , γ, p∞ and e∗ are constants specific to the fluid,
and

s0 = s(ρ0, T0) (100)

defines a reference entropy. From (99) we may now derive all the needed
thermodynamic relations, for instance the pressure law

p(ρ, e) = (γ − 1)ρ(e− e∗)− γp∞. (101)

We refer to [9] and the references therein for further details. In the following,
we will describe how this can be used as a basis for a highly simplified phase
transition model by considering the incompressible limit for the liquid and
the ideal limit for the gas.

6.1.1. A model for CO2

We now assume that both the liquid and the gas phase of the mixture
are described by a separate equation of state based on (99).

• Liquid phase. We consider the incompressible limit of (99), given by

A`(T ) = cV,`T

(
1− ln

(
T

T0

))
+ e∗,` − s0,`T, (102)

supplemented by
ρ` = const. (103)

For our CO2 model, we use the parameters

T0 = 304.128 K, (104)

e∗,` = 0, (105)

s0,` = 0, (106)

ρ` = 1229.25 kg/m3, (107)

cV,` = 2.042 kJ/(kg ·K). (108)
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• Gas phase. We consider the ideal gas limit of (99), given by

Ag(ρ, T ) = cV,gT

(
1− ln

(
T

T0

)
+ (γ − 1) ln

(
ρ

ρ0

))
− s0,gT + e∗,g.

(109)
For our CO2 model, we use the parameters

ρ0 = 161.41 kg/m3, (110)

γ = 1.174, (111)

cV,g = 863.7 J/(kg ·K), (112)

e∗,g = 551.616 kJ/kg, (113)

s0,g = 765.668 J/(kg ·K). (114)

Herein, the parameters (104)–(108) and (110)–(114) have been determined
by minimizing the global error in density, compared to the Span–Wagner
reference equation-of-state [27], in the region defined by

p ∈ [0.528 MPa, 7.3773 MPa], (115)

T ∈ [216.60 K, 304.128 K]. (116)

As usual, phase equilibrium is determined by the chemical potentials being
equal, where for our simplified model we may derive:

µg(p, T ) = γcV,g

(
1− ln

(
T

T0

)
+
γ − 1

γ
ln

(
p

p0

))
− s0,gT + e∗,g, (117)

µ`(p, T ) = cV,`

(
1− ln

(
T

T0

))
+
p

ρ`
. (118)

We now have all the information needed to calculate the flow rate q as de-
scribed in Section 5.2. Note however, that this involves solving a number
of coupled, nonlinear equations. For the simulations presented here, we em-
ployed a method based on the Newton–Raphson procedure.

6.2. The Span–Wagner equation-of-state

Having presented a highly simplified model for two-phase mixtures, we
now move to the other end of the spectrum. The Span–Wagner [27] equation-
of-state is a complex, multi-parameter equation, constructed to model gas-
liquid CO2 to a high degree of accuracy. Within the relevant physical region,
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the relative error in the density does not exceed 0.05%, and the remaining
thermodynamic parameters are also modeled to a similar degree of accuracy.

The degree of complexity of this state equation does however severely
limit the usefulness of analytical calculations; for most practical purposes,
it must be treated as a black box. However, the Span–Wagner equation is
implemented in several available computer codes suitable for interfacing with
numerical solvers, for instance the REFPROP library [20].

The Span–Wagner equation is formulated in terms of the Helmholtz free
energy A(ρ, T ) and is therefore in principle able to model mixtures out of
phase equilibrium. However, it should be noted that the model is not vali-
dated against experimental data in this case. Hence, in the following, only
calculations for the equilibrium nozzle flow model will be presented.

6.3. Numerical results

We consider now a tank filled with a CO2 mixture in phase equilibrium
at

p1 = 7 MPa, (119)

T1 = 300 K, (120)

containing a leakage of cross-sectional area A connecting the tank to the
surroundings at po = 1 MPa. In the context of (98), we assume the ratio

A

V
= 3.60 · 10−5 m−1, (121)

i.e the size of the hole is small compared to the size of the tank.
A fourth-order Runge-Kutta method was used to solve the evolution equa-

tions (96)–(97), employing the algorithm described in Section 5.2. The time
development of the tank state given by the different models for the nozzle
flow is plotted in Figure 1.

We observe the expected result that the EQ model leads to slower drainage
from the tank than the FR model. However, note that the SW-EQ model
gives quite similar results as the FR model, indicating that the deviation be-
tween the frozen and equilibrium model is largely compensated by the devia-
tion between the incompressible liquid/ideal gas and Span–Wagner equations
of state.
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Figure 1: Time development of the tank state.

6.4. Verification of the mass flow principle

The simulation of the previous section illustrates the expected result that
the mass flow rate predicted by the frozen model is larger than the corre-
sponding flow rate of the equilibrium model, as stated by the inequality (84).
However, as indicated in Section 5.1, this principle can only be guaranteed
for sufficiently small

∆p = p1 − po. (122)

We now wish to illustrate the fact that in practice, the principle seems to
have a rather large region of validity. We consider again an outlet pressure
of

po = 1 MPa, (123)
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and let the tank state be in phase equilibrium, with mixture variables varying
within the region

ρ1 ∈ [100 kg/m3, 1200 kg/m3], (124)

(ρe)1 ∈ [1 · 108 kg/(m · s2), 1.1 · 109 kg/(m · s2)]. (125)

The difference
∆q = q̃ − q̂ (126)

is plotted as a function of the tank state in Figure 2. We observe that the
principle (84) is everywhere respected.
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Figure 2: Mass flux difference between frozen and equilibrium models at po = 1 MPa,
using a CO2 mixture modeled as an incompressible liquid and ideal gas.

7. Conclusions

We have presented in detail the theory of energy invariants leading up
to the frozen and equilibrium models for the mass rates in two-phase nozzle
flow. Herein, some already established results are included for completeness.

The main result of our paper is the observation that the equilibrium flow
rate is guaranteed to be lower than the frozen flow rate (for sufficiently small
pressure differences) as long as

ĉ ≤ c̃. (127)

22



For this model this is precisely the subcharacteristic condition for linear sta-
bility, a condition proved to hold for all thermodynamically stable substances.

The relationships (127) and (84) are well-known among fluids engineers.
The purpose of this paper has been to put these observations in a more
precise theoretical setting. In particular, this direct coupling between the
mathematical theory of relaxation systems and nozzle flow, i.e. the relation-
ship between stability and flow rates, has to the best of our knowledge so far
never been commented on in the literature.

We have also investigated the magnitude of this effect through a numerical
simulation of tank leakage of CO2. This simulation demonstrated that the
difference between the frozen and equilibrium nozzle flow models may be
significant; in particular, the difference is similar in magnitude to the error
introduced by approximating the thermodynamics with an incompressible
liquid/ideal gas assumption.
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