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Abstract. We consider the dynamics of the director in a nematic liquid crys-
tal cell with an applied electric field. The bend-splay geometry is assumed,

and the director is weakly anchored at the boundary. For this setting, ex-

cited equilibrium states of odd parity have been observed experimentally by
Kumar et al. (2010) and investigated analytically by Bevilacqua and Napoli

(2012), but the dynamics of the transition between them has so far not been

the subject of much study.
An implicit finite difference method is derived for studying the time-evolution

of the director field under varying voltages and anchoring strengths. The

scheme solves the general nonlinear equations, i.e., it does not assert the one-
constant approximation, and allows coupling with Gauss’ law for the electric

field. Through numerical simulation of basic transition experiments, we show

how excited states of odd parity can manifest, also in the general nonlinear
case.

1. Introduction

1.1. Background. Nematic liquid crystals usually consist of rod-shaped organic
molecules for which it is energetically favorable for neighboring molecules to align.
This causes macroscopic correlation in the orientation of their long axis, while the
molecules themselves are free to flow like a liquid. Nematic liquid crystals have
seen widespread use in display devices, due to the optical birefringence associated
with the anisotropy of the molecules. Since the orientation of the long axis can be
manipulated by applied electromagnetic fields, polarized light can be either stopped
by or let through a liquid crystal cell, depending on the applied voltage difference.

Under the assumption of constant degree of orientation, the state of a nematic
liquid crystal is often represented in terms of two linearly independent vector fields:
the velocity field giving the flow and the director field giving the local average
molecular orientation. In this work we will assume a steady flow field and focus on
the dynamics of the director. This implies disregarding phenomena such a back-
flow, which can be important in the rheology of liquid crystals [5]. Furthermore,
we will restrict our discussion to a one-dimensional liquid crystal cell on x ∈ [0, L]
in the bend-splay geometry. Specifically, we assume the director n is fixed to the
x− y plane, i.e.,

(1) n(x, t) = (cos(ψ(x, t)), sin(ψ(x, t)), 0),

where ψ is the angle between the x-axis and the director. Herein, we will consider
numerical solutions to the initial-value problem

qψT − c̃(ψ)(c̃(ψ)ψX)X +
1

2
h2 sin(2ψ)Ẽ2 = 0, (X,T ) ∈ (0, 1)× R+,(2a)

ψ(X, 0) = ψ0(X), X ∈ (0, 1),(2b)
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with boundary conditions

ψX +
1

2

β

c̃2(ψ)
sin(2ψ) = 0, X = 0,(3a)

ψX −
1

2

β

c̃2(ψ)
sin(2ψ) = 0, X = 1.(3b)

In the above, the dimensionless constants q, h and β represent dissipation, field
strength and anchoring strength, respectively, and

c̃(ψ) =

√
cos2(ψ) +

α2

α1
sin2(ψ).

The classical example of interaction between the director field and an external
electric or magnetic field is the Fréedericksz transition. In its most basic form, it
can be described as a competition between elastic torques resisting distortions in
the director field, and electromagnetic torques aligning molecules along a preferred
direction: Consider e.g. a liquid crystal cell where the the easy direction at the
surfaces is fixed at ψ = π/2. The equilibrium configuration is then a homogeneous
director field. An electric field is applied twisting the director towards the angle
π. When the applied field is below some critical value, E < EF, elastic forces
dominate and the constant director state ψ = π/2 is stable. However, when the
field is sufficiently strong, E > EF, the equilibrium state becomes a nontrivial
configuration where π/2 < ψ ≤ π in the interior of the domain. This sudden
realignment is what is often referred to as the Fréedericksz transition.

Usually, the surfaces of liquid crystals are designed in such a way that the di-
rector remains strongly anchored at normal operating voltages in display devices
[3]. However, it has been theorized that having more weakly anchored director
fields at the surfaces could allow for lower operating voltages and quicker response
times [10]. In the modeling, this can be introduced by applying weak boundary
conditions, i.e., introducing an energy penalty for deviations from the anchoring
angle [11]. As shown in Figure 1, in the weak Fréedericksz transition there are
two critical points. The first one, as in the classic case, represents electric forces
overcoming the elastic. The second, the saturation threshold, is reached when the
electric torque is strong enough to overcome the boundary anchoring. Here, the
stable configuration is a constant homeotropic (ψ = π) state.

Since it was proposed by Rapini and Papoular [11], the weak Fréedericksz tran-
sition has been an important part of the liquid crystal literature [5, 13, 12]. In
their recent paper, Costa et al. [4] were able to prove a uniqueness property for
stationary solutions of the weak Fréedericksz transition. Specifically, they showed
that for any given values of the applied field, field susceptibility, elastic constants
and anchoring energy, there exists a unique solution ψ(x) ∈ [0, π/2] of the equations
describing the force balance of the director field.

However, in their recent work, Kumar et al. [7] observed experimentally director
states that break the even symmetry around the center of the cell. This discovery
led Bevilacqua and Napoli [2] to investigate the uniqueness of minimizers of the
free energy on the full interval ψ ∈ [0, π]. Specifically, they studied the model

(4) ψXX −
1

2
h2 sin(2ψ) = 0, X ∈ (0, 1),

with boundary conditions

ψX +
1

2
β sin(2ψ) = 0, X = 0,(5a)

ψX −
1

2
β sin(2ψ) = 0, X = 1,(5b)
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Figure 1. Illustration of the weak Fréedericksz transition. Left:
For a low electric field the anchoring forces dominate and the di-
rector field is in a homogeneous (ψ = π/2) configuration. Middle:
For electric fields above the Fréedericksz threshold but below the
saturation threshold there is a competition between electric and
anchoring forces leading to a nontrivial configuration. Right: For
strong electric fields (over the saturation threshold) the electric
forces overcome the anchoring and the configuration is homeotropic
(ψ = 0).

where h is the dimensionless field and β is the dimensionless anchoring strength. By
using direct methods and calculating exact solutions, they showed that there exists
a hierarchy of excited states satisfying the stationary equations (4)–(5). Moreover,
these solutions were shown to be of different parities.

The nonuniqueness of stationary solutions for the weak Fréedericksz transition
makes the dynamics of the problem particularly interesting, and herein lies the
main purpose of this paper. Given a constant electric field (Ẽ = 1) and the one-
constant approximation (α1 = α2), the model (2)–(3) reduces to that of Bevilacqua
and Napoli (4)–(5). However, it is not clear how the existence of excited stationary
director states will effect the dynamics of the Fréedericksz transition. We aim to
derive a robust and efficient numerical scheme for (2)–(3), and use this to study
the evolution of the director field. Specifically, we wish to address two questions:

(1) How will excited equilibrium states manifest in the basic Fréedericksz tran-
sition experiment?

(2) Will relaxing the one-constant approximation and coupling with a noncon-
stant electric field influence the experiment?

To the best of our knowledge, this work is the first attempt to numerically study
the dynamic transition to excited director states in the Fréedericksz transition with
weak anchoring.

This paper is organized as follows: In Section 2 we use an energy variational
approach to derive the basic nondimensional model under consideration (2)–(3).
Different simplifications with regard to the electric field and elasticity will be also
be discussed. Section 3 concerns an implicit numerical time-stepping scheme for
solving the governing equations. Herein, we show the well-posedness of the nonlin-
ear implicit equations of the discrete problem. In Section 4 we perform numerical
experiments addressing the questions posed above. In particular, we will show that
excited director states can be observed in numerical experiments.



4 P. AURSAND, G. NAPOLI, AND J. RIDDER

2. Variational derivation of the dynamic model

The governing equations for the director field will be derived by assering an
energy law for the system. The time evolution of the director field is then given by
a dissipative variational principle.

2.1. The full model. Under the assumption that n is given by (1), the governing
equations for the director field will be derived using the different contributions to
the energy with an action principle. Expressed in terms of ψ, the bulk kinetic
energy can be written as

WK =
1

2

∫ L

0

σψ2
t dx,

where σ is an inertial constant. A typical value for σ is ∼ 10−13 kg m−1 (for the
nematic MBBA [6]).

The elasticity of the liquid crystal will resist distortions in the director field.
The standard model for the elasticity in nematics is given by the Oseen–Frank free
energy density

(6) WOF (n,∇n) =
1

2
α1|n× (∇× n)|2 +

1

2
α2(∇ · n)2 +

1

2
α3(n · (∇× n))2 .

The energy (6) is the most general form which is both quadratic in∇n and invariant
with respect to the transformation n→ −n. The constants α1, α2 and α3 represents
bend, splay and twist distortions, respectively. For the typical liquid crystal 5CB,
values have been measured to α1 = 8.2× 10−12 N, α2 = 6.2× 10−12 N, and α3 =
3.9× 10−12 N. Given the director field (1), the elastic bulk energy takes the form

WOF =
1

2

∫ L

0

c2(ψ)ψ2
x dx

with

c(ψ) =

√
α1 cos2(ψ) + α2 sin2(ψ)) .

The anisotropic nature of the molecules will cause the electric displacement in
the liquid crystal to depend on the director field. In what follows, we will assume
that the contribution to the displacement is purely dielectric and given by

(7) D = ε0(ε⊥E + εa(n ·E)n) ,

where ε0 = 8.854× 10−12 F m−1 is the permittivity in free space, ε⊥ is the relative
permittivity perpendicular to the director (ε⊥ = 7 for 5CB [12]) and εa is the
dielectric anisotropy (εa = 11.5 for 5CB [12]). The contribution to the bulk energy
from the electric field is then

(8) WE = −1

2

∫ L

0

E ·D dx = −1

2

∫ L

0

d(ψ)E2 dx,

where

d(ψ) = ε0(ε⊥ + εa cos2(ψ)).

We assume that the surfaces at each end of the cell has been treated in such
a way that a particular director orientation is energetically preferred. To achieve
this, we apply an anchoring potential, and let

(9) WB =
1

2
w cos2(ψ), x = 0, L

for some constant w representing the anchoring strength. We note that for this
choice the parallel (homogeneous) alignment will be energetically preferred at the
boundary for w > 0 and, conversely, the homeotropic for w < 0.
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The energy dissipation rate is assumed to be of the form

(10) D =
1

2
κ

∫ L

0

ψ2
t dx,

where κ is a dissipation constant. For the liquid crystal MBBA, κ = 0.0777 Pa s, [12].
Taking into account elastic, electric and boundary energies, the total energy

balance takes the form

(11)

d

dt

(1

2

∫ L

0

(
σψ2

t + c2(ψ)ψ2
x − d(ψ)E2

)
dx+

1

2
w cos2(ψ) (|x=0+|x=L)

)
= −1

2
κ

∫ L

0

ψ2
t dx.

Following the approach from [1], we can use the dissipative principle of least action
to derive the evolution equation

(12) σψtt + κψt − c(ψ)(c(ψ)ψx)x −
1

2
d′(ψ)E2 = 0, (x, t) ∈ (0, L)× R+ ,

with boundary conditions

c2(ψ)ψx +
w

2
sin(2ψ) = 0, x = 0,(13a)

c2(ψ)ψx −
w

2
sin(2ψ) = 0, x = L.(13b)

In the rest of this paper, we will follow common practice and assume that the
inertial term can be neglected in favor of dissipative forces, i.e. σ = 0.

In general, the electric field will depend on the director configuration through
Gauss’ law. Under the assumptions above, we can write the field E = −Ux, and
the equation to be solved is

(d(ψ)Ux)x = 0 ,

with boundary conditions U(0) = 0 and U(L) = V0. Hence, for a given director
configuration, Ux can be determined by

(14) Ux(x) =
1

d(ψ(x))

(∫ L

0

1

d(ψ(x′))
dx′
)−1

V0 .

In the interest of deriving a dimensionless version of the model (12)–(13), we
introduce the scalings X = x/L, T = t/τ and u = U/V0. Here, τ is some character-
istic time scale for the dynamics of the system. Furthermore, we follow Bevilacqua
and Napoli [2] and introduce the extrapolation length

` =
α1

w

and the electric coherence length

ξ =
L

V0

√
α1

ε0εa

Moreover, we define the nondimensional quantities

c̃(ψ) =

√
cos2(ψ) +

α2

α1
sin2(ψ), h =

L

ξ
, β =

L

`
and q =

L2κ

α1τ
.

Using the numbers defined above, we can write (12) in the equivalent form

(15) qψT − c̃(ψ)(c̃(ψ)ψX)X +
1

2
h2 sin(2ψ)u2

X = 0, (X,T ) ∈ (0, 1)× R+ ,
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and for the boundary conditions (13),

ψX +
1

2

β

c̃2(ψ)
sin(2ψ) = 0, X = 0,(16a)

ψX −
1

2

β

c̃2(ψ)
sin(2ψ) = 0, X = 1.(16b)

2.2. Constant electric field approximation. The assumption that the electric
field remains constant, i.e., is unaffected by the state of the director field, can be
introduced by removing the coupling with Gauss’ law. The nondimensional electric
field is then given by uX = 1, and we can replace (15) with

(17) qψT − c̃(ψ)(c̃(ψ)ψX)X +
1

2
h2 sin(2ψ) = 0, (X,T ) ∈ (0, 1)× R+ ,

endowed with the boundary condition (16).

2.3. One-constant approximation. A common simplification made in the lit-
erature is the so-called one-constant approximation α1 = α2 = α3. Under this
assumption we have c̃(ψ) = 1, and the nondimensional problem can be written as

(18) qψT − ψXX +
1

2
h2 sin(2ψ) = 0, (X,T ) ∈ (0, 1)× R+ ,

with boundary conditions

ψX +
1

2
β sin(2ψ) = 0, X = 0,(19a)

ψX −
1

2
β sin(2ψ) = 0, X = 1.(19b)

Remark 2.1. A simple transformation X → X − 1/2 and ψ → π/2 − ψ reveals
that the stationary version of (18)–(19) is equivalent to the problem studied by
Bevilacqua and Napoli [2].

3. The numerical method

To define the numerical scheme, divide the interval [0, 1] into N cells of length
∆X and choose a time step ∆T . This gives grid points

(Xi, T
n) = (i∆X,n∆T ),

where i = 0, . . . , N and n ∈ N. The numerical method defined below will calculate
values ψni that approximate the exact solution ψ on these grid points.

The discretization defined below is based on central differences. However, deriva-
tives in space must be handled with care to accommodate the fact that the direc-
tor describes the orientation of symmetric molecules, i.e., n = −n. For example,
ψn0 = 0 and ψn1 = π

2 describe physically the same situation as ψn0 = 0 and ψn1 = 3π
2 ,

and should thus give rise to the same elastic energy. Hence, the straightforward
discretization DXψ

n
i+ 1

2

= 1
∆X (ψni+1 − ψni ) is adjusted to

DXψ
n
i+ 1

2
·∆X

= p[−π
2 ,

π
2 )(ψ

n
i+1 − ψni )

:=

{
(ψni+1 − ψni ) mod π if ((ψni+1 − ψni ) mod π) ∈ [0, π2 ),

((ψni+1 − ψni ) mod π)− π otherwise,

which guarantees DXψ
n
i+ 1

2

·∆X ∈ [−π2 ,
π
2 ). For the discretization in time such an

adjustment is not necessary, because |ψn+1
i − ψni | < π/2 for sufficiently small time

steps.
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For better readability, define the averages

ψ
n+ 1

2
i =

1

2
(ψni + ψn+1

i ) , sin(2ψi)
n+ 1

2 =
1

2

(
sin(2ψni ) + sin(2ψn+1

i )
)
,

c
n+ 1

2
i =

1

2

(
c̃(ψni ) + c̃(ψn+1

i )
)
, c

n+ 1
2

i+ 1
2

=
1

2

(
c
n+ 1

2
i + c

n+ 1
2

i+1

)
,

and the difference operators

DTψ
n+ 1

2
i =

1

∆T
(ψn+1
i − ψni ) , DXψ

n+ 1
2

i+ 1
2

=
1

∆X
p[−π

2 ,
π
2 )(ψ

n+ 1
2

i+1 − ψ
n+ 1

2
i ) ,

and accordingly,

DX(cDXψ)
n+ 1

2
i =

1

∆X

(
c
n+ 1

2

i+ 1
2

(DXψ)
n+ 1

2

i+ 1
2

− cn+ 1
2

i− 1
2

(DXψ)
n+ 1

2

i− 1
2

)
.

The following implicit finite difference scheme discretizes the nonlinear model with
constant electric field (17) and weak anchroing boundary conditions (16).

Definition 1 (The numerical method). Let some initial data ψ0
i , i = 0, . . . , N be

given. For each time step n = 1, 2, 3, . . . , define ψn+1
1 , . . . , ψn+1

N−1 by

(20) qDTψ
n+ 1

2
i − cn+ 1

2
i DX(cDXψ)

n+ 1
2

i +
1

2
h2 sin(2ψi)

n+ 1
2 = 0 ,

and ψn+1
0 , ψn+1

N by

DXψ
n+ 1

2
1
2

+
β

2c
n+ 1

2
1
2

c
n+ 1

2
0

sin(2ψ
n+ 1

2
0 ) = 0 ,(21a)

DXψ
n+ 1

2

N− 1
2

− β

2c
n+ 1

2

N− 1
2

c
n+ 1

2

N

sin(2ψ
n+ 1

2

N ) = 0 .(21b)

A corresponding discrete version of the energy (11) is given by

(22)
En =

∆X

2

(
N−1∑
i=1

(
cni+ 1

2

)2(
DXψ

n
i+ 1

2

)2 − h2

(
ε⊥
εa

+ cos2(ψni )

))

+
β

2

(
cos2(ψn0 ) + cos2(ψnN )

)
.

In the following we will show that the implicit equations that define the scheme
have a unique solution. Furthermore, we will prove that scheme conserves approxi-
mately a discrete energy and converges to the exact solution as ∆X and ∆T go to
zero.

3.1. Well-definedness of the scheme. For fixed ψni , i = 0, . . . , N , equations
(20)–(21) can be written in the fixed point form

(ψn+1
0 , . . . , ψn+1

N ) = F(ψn+1
0 , . . . , ψn+1

N ) ,

where F is given by

(F(ψn+1
0 , . . . , ψn+1

N ))i = ψni +
∆T

q
c
n+ 1

2
i DX(cDXψ)

n+ 1
2

i − ∆T

2q
h2 sin(2ψi)

n+ 1
2 ,

(23a)
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for i = 1, . . . , N − 1, and, for ∆X sufficiently small,

(F(ψn+1
0 , . . . , ψn+1

N ))0 = −ψn0 + 2ψ
n+ 1

2
1 +

β∆X

c
n+ 1

2
1
2

c
n+ 1

2
0

sin(2ψ
n+ 1

2
0 ) ,(23b)

(F(ψn+1
0 , . . . , ψn+1

N ))N = −ψnN + 2ψ
n+ 1

2

N−1 +
β∆X

c
n+ 1

2

N− 1
2

c
n+ 1

2

N

sin(2ψ
n+ 1

2

N ) .(23c)

Hence, (20)–(21) have a solution if F is a contraction.
To show this, first define the constants

|c̃(ψ)| =
√

cos2(ψ) +
α2

α1
sin2(ψ) ≤ max

(
1,

√
α2

α1

)
=: C1 ,

|c̃′(ψ)| =
|α2

α1
− 1||sin(ψ) cos(ψ)|√

cos2(ψ) + α2

α1
sin2(ψ)

≤
1
2 |
α2

α1
− 1|

min
(

1,
√

α2

α1

) =: C2 ,

|c̃(ψ)| =
√

cos2(ψ) +
α2

α1
sin2(ψ) ≥ min

(
1,

√
α2

α1

)
=: C3 ,

and note that if ‖ψn‖l∞ ≤ K0, for some constant K0, then

|F(ψn+1)i| ≤ K0 +
∆T

q
C2

1

1

∆X2
(2(K0 + ‖ψn+1‖l∞)) +

∆T

2q
h2 ,

for i = 1, . . . , N − 1,

|F(ψn+1)0| ≤ K0 + 2

(
1

2
(K0 + F(ψn+1)1)

)
+

β

C2
3

∆X ,

and similarly for |F(ψn+1)N |.
Next, choose some K1,K2,K3 > 0 and ∆X, ∆T , such that

∆X ≤ C2
3

β
K1 ,(24a)

∆T ≤ 2q

h2
K2 ,(24b)

∆T ≤ q

2C2
1

K3∆X2

K0 + (3K0 +K1 +K2 +K3)
.(24c)

Then, for ‖ψn+1‖l∞ ≤ 3K0 +K1 +K2 +K3, we have

|F(ψn+1)i| ≤ K0 +K2 +K3 , for i = 1, . . . , N − 1,

|F(ψn+1)0| ≤ K0 + 2 · 1

2
(K0 + (K0 +K2 +K3)) +K1

= 3K0 +K1 +K2 +K3 ,

|F(ψn+1)N | ≤ 3K0 +K1 +K2 +K3 ,

i.e., ‖F(ψn+1)‖l∞ ≤ 3K0 +K1 +K2 +K3.
Since ψ describes the angle of the director, we can choose K0 = π. For any

K > 3K0, set Ki = K/3−K0 for i = 1, 2, 3, and choose ∆T and ∆X according to
(24). Above we have shown that F maps

BK := {ψn+1|‖ψn+1‖l∞ ≤ K}

on (a subset of) itself. The following theorem states that F is also a contraction on
BK , from which follows that F has a unique fix point in BK and hence the implicit
equations that define the scheme have a unique solution.
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Theorem 1. The function F defined in (23) is a contraction on BK with respect
to the l∞-norm if ∆T and ∆X satisfy (24) and in addition,

∆T

(
CA

∆X2
+ CB1

)
+ ∆XCB2

< 1

for CA, CB1 , CB2 defined by (25) below, depending only on K and the physical
constants α1, α2, h, q, and β.

Proof. In the following, we will prove that for arbitrary ψn+1 and ψ̂n+1,

‖F(ψ̂n+1)−F(ψn+1)‖l∞ ≤ C‖ψ̂n+1 − ψn+1‖l∞ ,

for some C < 1. Note that ψn in the definition of F is the same for both F(ψn+1)

and F(ψ̂n+1). For the sake of brevity, define ĉ
n+ 1

2
i = (c̃(ψni ) + c̃(ψ̂n+1

i ))/2.
For i = 1, . . . , N − 1,

|F(ψ̂n+1)i −F(ψn+1)i| ≤
∆T

q

(
|ĉn+ 1

2
i − cn+ 1

2
i ||DX(ĉDX ψ̂)

n+ 1
2

i |

+ |cn+ 1
2

i ||DX((ĉ− c)DX ψ̂)
n+ 1

2
i |

+ |cn+ 1
2

i ||DX(c(DX(ψ̂ − ψ)))
n+ 1

2
i |

)
+
h2∆T

2q
|sin(2ψi)

n+ 1
2 − sin(2ψ̂i)

n+ 1
2 | .

This can be further bounded by

|ĉn+ 1
2

i − cn+ 1
2

i ||DX(ĉDX ψ̂)
n+ 1

2
i |

≤ 1

∆X
‖c̃′‖l∞‖c̃‖l∞ |ψ̂n+1

i − ψn+1
i |‖DX ψ̂

n+ 1
2

i+ 1
2

‖l∞

≤ 1

2∆X
C1C2|ψ̂n+1

i − ψn+1
i |(‖DX ψ̂

n+1
i+ 1

2

‖l∞ + ‖DXψ
n
i+ 1

2
‖l∞)

≤ C1C2

∆X2
(‖ψ̂n+1‖l∞ + ‖ψn‖l∞)‖ψ̂n+1 − ψn+1‖l∞ ,

and in the same manner

|cn+ 1
2

i ||DX((ĉ− c)DX ψ̂)
n+ 1

2
i | ≤ C1C2

∆X2
(‖ψ̂n+1‖l∞ + ‖ψn‖l∞)‖ψ̂n+1 − ψn+1‖l∞ ,

|cn+ 1
2

i ||DX(c(DX(ψ̂ − ψ)))
n+ 1

2
i | ≤ 2C2

1

∆X2
‖ψ̂n+1 − ψn+1‖l∞ ,

|sin(2ψi)
n+ 1

2 − sin(2ψ̂i)
n+ 1

2 | ≤ ‖ψ̂n+1 − ψn+1‖l∞ .

Putting the above estimates together, we arrive at

|F(ψn+1)i −F(ψ̂n+1)i|

≤
(

2

q
C1(C1 + C2(‖ψ̂n+1‖l∞ + ‖ψn‖l∞))

∆T

∆X2
+
h2

2q
∆T

)
‖ψ̂n+1 − ψn+1‖l∞ ,
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for i = 1, . . . , N − 1. For i = 0,

|F(ψn+1)0 −F(ψ̂n+1)0| ≤ |ψn+1
1 − ψ̂n+1

1 |

+ β∆X

(∣∣∣∣ 1

ĉ
n+ 1

2
1
2

− 1

c
n+ 1

2
1
2

∣∣∣∣ 1

ĉ
n+ 1

2
0

|sin(2ψ̂
n+ 1

2
0 )|

+
1

c
n+ 1

2
1
2

∣∣∣∣ 1

ĉ
n+ 1

2
0

− 1

c
n+ 1

2
0

∣∣∣∣|sin(2ψ̂
n+ 1

2
0 )|

+
1

c
n+ 1

2
1
2

1

c
n+ 1

2
0

∣∣∣sin(2ψ̂
n+ 1

2
0 )− sin(2ψ

n+ 1
2

0 )
∣∣∣) .

The terms on the right-hand side can be bounded by

|ψn+1
1 − ψ̂n+1

1 | = |F(ψn+1)1 −F(ψ̂n+1)1|

≤
(

2

q
C1(C1 + C2(‖ψ̂n+1‖l∞ + ‖ψn‖l∞))

∆T

∆X2
+
h2

2q
∆T

)
‖ψ̂n+1 − ψn+1‖l∞ ,

∣∣∣∣ 1

ĉ
n+ 1

2
1
2

− 1

c
n+ 1

2
1
2

∣∣∣∣ 1

ĉ
n+ 1

2
0

|sin(2ψ̂
n+ 1

2
0 )| =

|cn+ 1
2

1
2

− ĉn+ 1
2

1
2

|

ĉ
n+ 1

2
1
2

c
n+ 1

2
1
2

ĉ
n+ 1

2
0

|sin(2ψ̂
n+ 1

2
0 )|

≤ C2

2C3
3

‖ψ̂n+1 − ψn+1‖l∞ ,

1

c
n+ 1

2
1
2

∣∣∣∣ 1

ĉ
n+ 1

2
0

− 1

c
n+ 1

2
0

∣∣∣∣|sin(2ψ̂
n+ 1

2
0 )| = |cn+ 1

2
0 − ĉn+ 1

2
0 |

c
n+ 1

2
1
2

ĉ
n+ 1

2
0 c

n+ 1
2

0

|sin(2ψ̂
n+ 1

2
0 )|

≤ C2

2C3
3

‖ψ̂n+1 − ψn+1‖l∞ ,

1

c
n+ 1

2
1
2

1

c
n+ 1

2
0

∣∣∣sin(2ψ̂
n+ 1

2
0 )− sin(2ψ

n+ 1
2

0 )
∣∣∣ ≤ 2

C2
3

‖ψ̂n+1 − ψn+1‖l∞ .

Hence we get the estimate

|F(ψn+1)0 −F(ψ̂n+1)0|

≤

(
2

q
C1(C1 + C2(‖ψ̂n+1‖l∞ + ‖ψn‖l∞))

∆T

∆X2
+
h2

2q
∆T

+

(
β
C2

C3
3

+
2β

C2
3

)
∆X

)
‖ψ̂n+1 − ψn+1‖l∞ .

Analogously, one can derive a bound for i = N . Altogether,

‖F(ψ̂n+1)−F(ψn+1)‖l∞ ≤
(
CA

∆T

∆X2
+ CB1∆T + CB2∆X

)
‖ψ̂n+1 − ψn+1‖l∞ ,



11

where

CA =
2

q
C1(C1 + C2(K + π)) ,(25a)

CB1 =
h2

2q
,(25b)

CB2
= β

C2

C3
3

+
2β

C2
3

,(25c)

and hence, for suitable ∆T and ∆X, the function F is a contraction. �

In practice, we solve the implicit equations (20)–(21) using a Newton-Rhapson
iteration.

3.2. Varying electric field. The numerical method from Definition 1 can be
extended to solve the full model (15)–(16). Given a numerical solution ψn =
(ψn0 , . . . , ψ

n
N ) for the director field, the discrete electric field is approximated as

(26) (uX,i)
n =

1

∆X

1

d̃(ψni )

 N∑
j=0

1

d̃(ψnj )

−1

,

where d̃(ψ) is the nondimensional version of d(ψ),

d̃(ψ) = 1 +
εa
ε⊥

cos2(ψ) .

By defining the shorthand notation

(27) (u2
X,i)

n+ 1
2 =

1

2

(
(unX,i)

2 + (un+1
X,i )2

)
,

we can propose the following numerical scheme:

Definition 2 (The numerical method with coupled electric field). Let some ini-
tial data ψ0

i , i = 0, . . . , N be given. For each time step n = 1, 2, 3, . . . , define
(uX,1)n, . . . , (uX,N−1)n by (26), ψn+1

1 , . . . , ψn+1
N−1 by

(28) qDTψ
n+ 1

2
i − cn+ 1

2
i DX(cDXψ)

n+ 1
2

i +
1

2
h2 sin(2ψi)

n+ 1
2 (u2

X,i)
n+ 1

2 = 0,

and ψn+1
0 , ψn+1

N by (21).

Again, the time stepping can be performed by solving the 2N nonlinear implicit
equations(26), (28), and (21) for ψn+1 and unX .

4. Numerical experiments

The purpose of this section is to perform numerical experiments on the dynamics
of the weak Fréedericksz transition, using the numerical scheme described in Section
3. Two experiments will be considered, illustrated in Figure 2. Both involve study-
ing the evolution of the director configuration when h and β are changed to cross
the Fréedericksz threshold hF and the saturation threshold hS, given implicitly by

(29) hF =

√
α1

α2
β cot

(√
α1

α2

hF

2

)
and hS = β coth

(
hS

2

)
,

respectively [9, 13].
The first experiment illustrates the classic weak Fréedericksz transition shown in

Figure 1. The director state is initially homogeneous (ψ = π/2) and h < hF. The
field is then increased gradually until it is above the Fréedericksz threshold, and
finally above the saturation threshold.



12 P. AURSAND, G. NAPOLI, AND J. RIDDER

2 4 6 8 10 12
h

5

10

15

20

β

hS

hF

(2,13) (10,13)

(10,8)
(2,5)

(3,5)
(6,5)

Figure 2. The two basic numerical experiments. Bottom: The
anchoring β = 5 is kept constant while the field is increased grad-
ually until it gets above hF, and then finally until it crossed the
saturation threshold hS. Top: A cooling increases the anchoring
to cross the saturation threshold, then a field reduction brings the
state below hF. Dashed lines indicate the Fréedericksz threshold
hF for α2/α1 = 1± 0.4.

The second experiment involves a director initially in the homeotropic (ψ =
0) state. First, the liquid crystal is cooled, giving an increase in the anchoring
strength β. Then, the field is reduced until h < hF, where the ground state is the
homogeneous configuration.

A constant equilibrium state ψ is a stationary solution to (2), independently of
the values of h and β. In order to facilitate the transition from a non-stable equi-
librium state, we therefore add small stochastic perturbations to the homogeneous
(ψ = π/2) and the homeotropic (ψ = 0) initial data in the numerical experiments.
Specifically, we generate a zero-averaged fractional Brownian motion

(30) {Sn}Nn=1,

N∑
n=1

Sn = 0, |Sn+1 − Sn| ≤ 1,

with Hurst parameter H = 0.9. We then let the discrete initial data be given as

(31) ψ0
i =

π

2
+ δ Si + r δS ,

where r ∈ [−0.5, 0.5] is a uniformly distributed random number and δ, δS > 0 are
small parameters. In the following we will use δ = 0.01 and δS = 0.015.

All numerical simulations in this section are performed using N = 100 compu-
tational cells, if not stated otherwise. The time step is set according to

(32) ∆T = 0.3
∆X

1 + α2/α1
.

The dimensionless number q is set to 1 for all experiments. For typical values of
κ ≈ 1× 10−1 and α1 ≈ 1× 10−11, and assuming L = 1× 10−6 m, this implies a
characteristic time scale τ ≈ 1× 10−2 s.

For the time stepping, the implicit N nonlinear equations (including the bound-
ary conditions) are solved using a standard Newton–Raphson scheme. In each time
step, the configuration from the previous step is taken as an initial guess and the
iteration is performed until machine precision has been reached.
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4.1. Convergence. The convergence behavior of the implicit scheme is investi-
gated in the following. A numerical solution was calculated for a perturbed homo-
geneous (ψ = π/2) initial data with h = 4 and β = 5 and grid size N = N0 = 100.
The grid was refined according to Nk = 2kN0 with k = 0, · · · , 4, generating numeri-
cal solutions ψ(k) at T = 1. The error between consecutive solutions was calculated
according to

(33) Ek =
‖ψ(k) − ψ(k−1)‖L2(0,1)

‖ψ(k−1)‖L2(0,1)

.

In addition to the convergence of the numerical solutions, we also verify that the
energy law (11) is fulfilled in the discrete sense. Specifially, we look at the residual

(34) Resn+ 1
2 = DTE

n+ 1
2 − 1

2
q∆X

N∑
i=0

DTψ
n+ 1

2
i ,

where En+ 1
2 = (En +En+1)/2 is the discrete energy defined in (22), and calculate

∆T
∑
n(Resn+ 1

2 )2 as the grid is refined. Figure 3 shows the convergence results,
and it indicates that the numerical solutions converge to second order both in the
norm and in the energy balance.

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
log2N

21

20

19

18

17

16

15

14

lo
g 2
E

2

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
log2N

15

14

13

12

11

10

9

8

lo
g 2

( ∆
T
∑ n

(R
es
n

+
1/

2
)2
)

2

Figure 3. Convergence of the error under grid refinement (33) at
T = 1 (left) and the integrated residual of the discrete energy law
(34) from T = 0 to T = 1 (right). Dashed lines indicate the slope
corresponding to second-order convergence.

4.2. Weak Fréedericksz transition. In order to verify the basic force balance
of the weak Fréedericksz transtion shown in Figure 1, we perform the following
numerical experiment: Initially, we set h = 2 and β = 5, consistent with a stable
homogeneous (ψ = π/2) configuration. Also, for simplicity, we assume the one-
constant approximation. At T ∈ (0.5, 1) the field h is increased linearly to h = 3,
which is beyond the critical thereshold hF. The director field is then allowed to
stabilize until T = 3.5, for which the field is again increased linearly until it reaches
a value beyond the saturation threshold (h = 6). Figure 4 shows the evolution
of both the director configuration and the energy. The behavior is as expected
according to the classical picture of the weak Fréedericksz transition.

4.3. Relaxing the one-constant approximation. The basic transition experi-
ment from Section 4.2 can also be studied numerically in the nonlinear case, i.e., by
letting α1 6= α2. The extrapolation length and coherence length will be defined
using α1 as before for comparison.
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Figure 4. Evolution of the director field (left) and the discrete
energy (22) (right) for the gradual increase of the electric field from
h = 2 to h = 6. The anchoring is held constant at β = 5 and the
one-constant approximation is assumed.

Figure 5 shows a snapshot of the director configuration during the Fréedericksz
transition (T = 2) and during the saturation (T = 3.75). In the first case the
influence of the nonlinearity is significant, even for modest perturbations from the
one-constant approximation. For comparison, α2/α1 ≈ 0.75 at room temperature
for the liquid crystal 5CB [8]. Note that in general both the equilibrium config-
urations and the time evolution will be different when replacing the one-constant
approximation with an α2/α1 6= 1.

0.0 0.5 1.0

X

π/2

π

ψ

0.0 0.5 1.0

X

π/2

π

ψ

α2 /α1 =0.6

α2 /α1 =0.8

α2 /α1 =1.0

α2 /α1 =1.2

α2 /α1 =1.4

Figure 5. The director configuration at T = 2 (left) and at T =
3.75 (right) for the weak Fréedericksz transition experiment for
different values of α2/α1. The electric field is assumed constant.

4.4. Coupling with an electric field. Using the method from Section 3.2, the
weak transition experiment can also be performed with a coupled electric field.
Since in this case the value of the electric field is not given a priori, the parameter
h must be interpreted in a slightly weaker sense. Since it is based on the applied
voltage difference V0, h now represents represents the average field strength V0/L,
not the actual electric field E since this will vary both in space and in time.

Figure 6 shows the director configuration and the electric field at T = 2, for
different values of the relative electric anisotropy εa/ε⊥. For simplicity, the one-
constant approximation (α1 = α2) was used. The case εa/ε⊥ = 0 represents
an uncoupled electric field, and the results indicate significant differences in the
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director only for large values of the electric anisotropy. As a comparison, εa/ε⊥ ≈
1.64 at room temperature for the liquid crystal 5CB [8].

0.0 0.5 1.0

X

π/2

1.8

ψ

0.0 0.5 1.0

X

0

0.5

1.0

u

εa /ε =0

εa /ε =1

εa /ε =5

εa /ε =10

εa /ε =50

Figure 6. The director configuration (left) and the electric po-
tential (right) at T = 2 for the weak Fréedericksz transition exper-
iment for different values of εa/ε⊥ using the one-constant approx-
imation.

Explicit general solutions for the case with a fully coupled electric field are not
available. However, certain approximate solutions can be found given simplifying
assumptions. In particular, Napoli [9] considers the fully coupled problem with an
applied electric field. Using asymptotic matching, an explicit approximate solution
is calculated for large voltages V0 and assuming the one-constant approximation.

To compare with the approximate solution, the fully coupled problem was solved
using h = 25 and β = 30 with the one-constant approximation. Figure 7 shows the
evolution of the director configuration compared with the approximation. A small,
but noticable, difference can be observed between the steady-state solution and the
large-voltage approximation.

0.0 0.5 1.0

X

π/2

π

ψ

Large h approximation

T = 0.005
T = 0.010
T = 0.015
T = 0.020
T = 0.025

Figure 7. The evolution of the director configuration for the fully
coupled problem using h = 25 and β = 30 and assuming the one-
constant approximation. The initial data was a perturbed homo-
geneous configuration. The dotted line is the analytical approxi-
mation given by Napoli [9].
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4.5. Solutions of different parity. In this experiment we consider a director
field initially in the homeotropic state with h = 10 and β = 8. At T ∈ [0, 0.5] we
increase β linearly to 13, simulating a cooling of the sample. The stronger boundary
anchoring will then initiate an inverse Fréedericksz transition near the ends of the
sample, giving a nontrivial even or odd symmetric state, depending on the initial
perturbation. At T ∈ [0.8, 1.2] we reduce h linearly to 2, representing a gradual
reduction in the electric field. Because of the reduced electric bulk energy, the new
ground state will then be a homogeneous director configuration.

The results show that, depending on the initial perturbation, the final state
might end up in the ground state or an excited high-energy state. Figure 8 shows
that for one of the perturbations (solid lines) we first have a transition to the even
symmetric ground state for β = 13 and h = 10 at around T = 0.6. When the
electric field is reduced at T = 0.8 the director then relaxes to the homogeneous
ground state. For the second random initial perturbation the cooling at T ∈ [0, 0.5]
leaves the director in an excited odd symmetric state. When the field is reduced
we then obtain an excited state also for β = 13, h = 2. Figure 9 shows the different
contributions to the energy, for both solutions, as a function of time.

0.0 0.5 1.0
X

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.020

ψ

(a) Initial pertubations (T = 0)

0.0 0.5 1.0

X

−π/2

0

π/2

ψ

T=0.2

T=0.6

T=1.0

T=1.4

T=2.0

(b) Director evolution

Figure 8. The evolution of the director field for the two differ-
ent initial pertubarions. The initial perturbation displayed with
the solid (respectively dashed) line at the left corresponds to the
evolution showed with solid (respectively dashed) lines to the right.

These results were reproduced in the nonlinear case (α2/α1 = 0.75) and with
a coupled electric field with εa/ε⊥ = 1.64. The director evolution was almost
indistinguishable from that seen in Figure 8, and is omitted here for brevity. These
results indicate that odd director states also exist for models more general than the
linear uncoupled case that was analyzed in [2].

5. Summary

We have studied the dynamics of the director field for the classical Fréedericksz
transition in the bend-splay geometry with weak anchoring. For the dimensionless
problem we have derived a simple, robust and efficient numerical method. The
scheme can be used both for unequal elastic constants and with a coupled electric
field. We have proved that the nonlinear discrete equations are well-posed for
sufficiently small time steps.

Numerical experiments have been performed for basic transition experiments
where the applied electric field and the anchoring strength are varied. Herein, the
transition from a ground state to an excited (odd parity) state have been observed
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Figure 9. Evolution of the different terms in the discrete energy
(22) as a function of time for two different realizations of the initial
data.

in a basic cooling experiment. The existence of such states has recently been shown
experimentally [7] and theoretically in the stationary case [2]. However, to the
best of the authors’ knowledge, this is the first dynamic study of how excited (odd
parity) director states manifest in the weak Fréedericksz transition.

Moreover, the sensitivity of the time evolution of the weak Fréedericksz transition
with regard to common modeling assumptions has been investigated. Herein, the
one-constant approximation was shown to impact the dynamics of the problem
when using elastic constants comparable to those of the liquid crystal 5CB. Also,
to some extent, the problem was sensitive to the assumption of a constant electric
field. However, substantial deviations when coupling with Maxwell’s equations
could only be observed for very high values of εa/ε⊥.
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